В основе спектроскопических методов анализа лежат два основных закона. Первый из них – закон Бугера – Ламберта, второй закон – закон Бера. Объединенный закон Бугера-Ламберта-Бера имеет следующую формулировку: поглощение монохроматического света окрашенным раствором прямо пропорционально концентрации поглощающего свет вещества и толщине слоя раствора, через который он проходит.
Закон Бугера – Ламберта – Бера является основным законом светопоглощения и лежит в основе большинства фотометрических методов анализа. Математически он выражается уравнением:
I =Ι0·
или ln = fx,
где f – коэффициент поглощения,
x – толщина поглощающего слоя (размер кюветы).
Величину lnназывают оптической плотностью поглощающего вещества и обозначают буквой Е. Тогда закон можно записать так:
Е = ln = fx
Для разбавленных растворов:
fE = kdc,
где d – толщина поглощающего слоя (размер кюветы),
с – концентрация вещества,
k – коэффициент поглощения.
Отношение интенсивности потока монохроматического излучения, прошедшего через испытуемый объект, к интенсивности первоначального потока излучения называется прозрачностью, или пропусканием, раствора и обозначается буквой Т:
Т = –
Это соотношение может быть выражено в процентах. Величина Т, характеризующая пропускание слоя толщиной 1 см, называется коэффициентом пропускания. Оптическая плотность Е и пропускание Т связаны между собой соотношением:
Е = -lg Т.
Е и Т являются основными величинами, характеризующими поглощение раствора данного вещества с определенной его концентрацией при определенной длине волны и толщине поглощающего слоя.
Величина коэффициента поглощения k зависит от способа выражения концентрации вещества в растворе и толщины поглощающего слоя. Если концентрация выражена в молях на литр, а толщина слоя – в сантиметрах, то он называется молярным коэффициентом поглощения, или коэффициентом экстинкции и обозначается символом ε и равен оптической плотности раствора с концентрацией 1 моль/л, помещенного в кювету с толщиной слоя 1 см.
E = lg = εdc
Величина молярного коэффициента поглощения зависит:
- от природы растворенного вещества;
- длины волны монохроматического света;
- температуры;
- природы растворителя[7].
Поглощение света веществом характеризуется кривой поглощения (см. рис.2.1), которая строится на основе измерения интенсивностей поглощения света определенных длин волн, рассчитанных по закону Бугера-Ламберта-Бера. Если кривая поглощения построена в координатах ε – то положение ее максимума на оси абсцисс (λ,нм) характеризует спектральный цвет и является мерой энергии возбуждения, а положение максимума на оси ординат (εmax) – интенсивность окраски и является мерой вероятности электронного перехода.
Рис.2.1 Спектральная кривая поглощения
С уменьшением энергии возбуждения λmax смещается в длинноволновую часть спектра, при этом окраска изменяется от желтой к оранжевой, красной и т. д. Такое изменение цвета называется его углублением или батохромным сдвигом. Увеличение энергии возбуждения, приводящее к смещению λmax в коротковолновую область и изменению окраски в обратной последовательности, называется повышением цвета или гипсохромным сдвигом [14].
Вид спектра поглощения определяется как природой образующих его атомов и молекул, так и агрегатным состоянием вещества. Спектр разреженных атомарных газов – ряд узких дискретных линий, положение которых зависит от энергии основного и возбужденных электронных состояний атомов. Спектры молекулярных газов – полосы, образованные тесно расположенными линиями, соответствующими переходам между колебательным и вращательным энергетическими уровнями молекул. Спектр вещества в конденсированной фазе определяется не только природой составляющих его молекул, но и межмолекулярными взаимодействиями, влияющими на структуру электронных уровней. Обычно такой спектр состоит из ряда широких полос различной интенсивности.
Классификация химических реакций
Простыми называются реакции, состоящие только из одной стадии. Сложными называются реакции, состоящие из двух и более стадий. 1. Реакции соединения. При реакциях соединения из нескольких реагирующих веществ относительно простого состава получается одно вещество более сложного состава: A + B + C = D ...
Классификация сидерохромов
Сидерохромы представляют собой специальные пептиды, продуцируемые микроорганизмами, которые предназначены для связывания из окружающей среды ионов железа. В настоящее время различают два главных типа сидерохромов ‒ феноляты и гидроксаматы. Оба лиганда представляют собой слабые кислоты, и коор ...
Фосфолипазы
Фактически различают несколько фосфолипаз группы А, они являются составной частью многих тканей и секретов живых организмов. Фосфолипазы A1 в большинстве своем - внутриклеточные ферменты, часто мембраносвязанные, не нуждаются в коферменте. Их молекулярные массы варьируют в пределах 15-90 тыс.; опти ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.