Новая химия » Концептуальные уровни в познании веществ и химические системы » Дискретность электронных состояний в атоме

Дискретность электронных состояний в атоме

Страница 2

При a-распаде ядро атома испускает два протона и два нейтрона, связанные в ядро атома гелия 42Не; это приводит к уменьшению заряда исходного радиоактивного ядра на 2, а его массового числа на 4. Таким образом, в результате a-распада образуется атом элемента, смещенного на два места от исходного радиоактивного элемента к началу периодической системы.

Возможность b-распада связана с тем, что по современным представлениям протон и нейтрон представляют собой два состояния одной и той же элементарной частицы — нуклона (от лат. nucleus — ядро). При известных условиях (например, когда избыток нейтронов в ядре приводит к его неустойчивости) нейтрон может превращаться в протон, одновременно «рождая» электрон:

нейтрон ® протон + электрон или n ®р+ е-

Таким образом, при b-распаде один из нейтронов, входящих в состав ядра, превращается в протон; возникающий при этом электрон вылетает из ядра, положительный заряд которого на единицу возрастает.

Возможно также превращение протона в нейтрон: протон ® нейтрон + позитрон или p® n + n+, где n+ — позитрон — элементарная частица с массой, равной массе электрона, но несущая положительный электрический заряд; по абсолютной величине заряды электрона и позитрона одинаковы. Процесс превращения протона в нейтрон с образованием позитрона может происходить в тех соединениях, когда неустойчивость ядра вызвана избыточным содержанием в нем протонов. При этом один из протонов, входящих в состав ядра, превращается в нейтрон, возникающий позитрон вылетает за пределы ядра, а заряд ядра на единицу уменьшается. Такой вид радиоактивного распада называется позитронным b-распадом (или b+-распадом) в отличие от ранее рассмотренного электронного b-распада (b--распада). Этот вид радиоактивного распада наблюдается у некоторых искусственно полученных радиоактивных изотопов.

Изменение заряда ядра при b-распаде приводит к тому, что в результате b-распада образуется атом элемента, смещенного на одно место от исходного радиоактивного элемента к концу периодической системы (в случае b--распада) или к ее началу (в случае b+-распада).

К уменьшению заряда ядра на единицу приводит не только b+-распад, но и электронный, захват, при котором один из электронов атомной электронной оболочки захватывается ядром; взаимодействие этого электрона с одним из содержащихся в ядре протонов приводит к образованию нейтрона:

Электрон чаще всего захватывается из ближайшего к ядру К-слоя (.К-захват), реже из L или М-слоев.

Спонтанным делением называется самопроизвольный распад ядер тяжелых элементов на два (иногда на три или четыре) ядра элементов середины периодической системы. Варианты такого деления очень разнообразны, так что общих правил смещения по периодической системе не существует; чаще всего происходит распад исходного ядра на тяжелый и легкий осколки, несущие, соответственно, около 60 и 40% заряда и массы исходного ядра. Относительное содержание нейтронов в ядрах тяжелых элементов выше, чем для ядер устойчивых изотопов середины периодической системы, поэтому при спонтанном делении распадающееся ядро испускает 2-4 нейтрона; образующиеся ядра все еще содержат избыток нейтронов, оказываются неустойчивыми и поэтому претерпевают ряд b--распадов.

Протонный распад представляет собой самопроизвольный распад ядер с дефицитом нейтронов, сопровождающийся испусканием одного или одновременно двух протонов. Образующееся ядро имеет заряд и массовое число меньше исходного на единицу в случае испускания одного протона и двух единиц при испускании двух протонов.

Элементы, расположенные в конце периодической системы (после висмута), не имеют стабильных изотопов. Подвергаясь радиоактивному распаду, они превращаются в другие элементы. Если вновь образовавшийся элемент радиоактивен, он тоже распадается, превращаясь в третий элемент, и так далее до тех пор, пока не получаются атомы устойчивого изотопа.

Ряд элементов, образующихся подобным образом один из другого, называют радиоактивным рядом.

Например, ряд урана:

ИЗОТОПЫ — разновидности одного и того же химического элемента, близкие по своим физико-химическим свойствам, но имеющие разную атомную массу. Название "изотопы" было предложено в 1912 английским радиохимиком Фредериком Содди, который образовал его из двух греческих слов: isos — одинаковый и topos — место. Изотопы занимают одно и то же место в клетке периодической системы элементов Менделеева.

Атом любого химического элемента состоит из положительно заряженного ядра и окружающего его облака отрицательно заряженных электронов (см.также АТОМА ЯДРО). Положение химического элемента в периодической системе Менделеева (его порядковый номер) определяется зарядом ядра его атомов. Изотопами называются поэтому разновидности одного и того же химического элемента, атомы которых имеют одинаковый заряд ядра (и, следовательно, практически одинаковые электронные оболочки), но отличаются значениями массы ядра. По образному выражению Ф.Содди, атомы изотопов одинаковы "снаружи", но различны "внутри".

Страницы: 1 2 3

Еще по теме:

Значение химической промышленности
Химическая промышленность – комплексная отрасль, определяющая, наряду с машиностроением, уровень НТП, обеспечивающая все отрасли народного хозяйства химическими технологиями и материалами, в том числе новыми, прогрессивными и производящая товары массового народного потребления. Химическая промышлен ...

Химические свойства скандия
Химически скандий довольно активен, проявляет степень окисления +3. При этом первыми теряются 4S2-электроны и лишь затем Зd-электроны. С водой он не взаимодействует даже при нагревании, но хорошо растворяется в кислотах с образованием солей Sc3+. По солеобразующей способности скандий сходен со щело ...

Молекулярно-кинетические свойства аэрозолей
Особенности молекулярно-кинетических свойств аэрозолей обусловлены: • малой концентрацией частиц дисперсной фазы — так, если в 1 см3 гидрозоля золота содержится 1016 частиц, то в таком же объеме аэрозоля золота менее 107 частиц; • малой вязкостью дисперсионной среды — воздуха, следовательно, малым ...

Идеи алхимии


Идеи алхимии

Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.

Категории

Copyright © 2018 - All Rights Reserved - www.chemitradition.ru
Copyright © 2021 - All Rights Reserved - www.chemitradition.ru