Рисунок 3.22 – Кривая течения дисперсии ПММА, содержащей диоксид титана, при различном времени выдержки перед повторным испытанием. Исходная концентрация мономера 15 %. 1 – исходная дисперсия; 2 - 90 минут.
Рисунок 3.23 – Кривая течения дисперсии ПММА, содержащей диоксид титана, при различном времени выдержки перед повторным испытанием. Исходная концентрация мономера 15 %. 1 – исходная дисперсия; 2 – 120 минут.
Рисунок 3.24 – Кривая течения дисперсии ПММА, содержащей диоксид титана, при различном времени выдержки перед повторным испытанием. Исходная концентрация мономера 15 %. 1 – исходная дисперсия; 2 – 1 сутки
О времени восстановления системой своей структуры можно судить по степени приближения кривой течения через определенный промежуток времени к кривой течения исходной композитной дисперсии.
Из рисунков 3.20 - 3.25 можно заметить, что структурирование системы не восстанавливается даже через 1 сутки, о чем свидетельствуют более низкие значения динамической вязкости при всех скоростях сдвига.
Рисунок 3.25 – Зависимость динамической вязкости дисперсии ПММА, содержащей диоксид титана, от скорости сдвига, при различном времени выдержки перед повторным испытанием. Исходная концентрация мономера 15 %. 1 – исходная дисперсия; 2 – 1 сутки
При увеличении исходной концентрации мономера до 30 % наблюдаемое явление структурирования сохраняется, причем процесс протекает быстрее – уже через 30 минут вязкость дисперсии достигает практически начального значения (рис. 3.27) и характер течения восстанавливается до исходного (кривые 1 и 2, рис. 3.26).
Рисунок 3.26 – Кривая течения дисперсии ПММА, содержащей диоксид титана, при различном времени выдержки перед повторным испытанием. Исходная концентрация мономера 30 %. 1 – исходная дисперсия; 2 - 30 минут
Рисунок 3.27 – Зависимость динамической вязкости дисперсии ПММА, содержащей диоксид титана, от скорости сдвига при различном времени выдержки перед повторным испытанием. Исходная концентрация мономера 30 %. 1 – исходная дисперсия; 2 – через 30 минут
Структурирование дисперсий, содержащих диоксид титана, вероятно можно объяснить тем, что в процессе синтеза образуются композитные частицы «полиметилметакрилат-диоксид титана». Строение таких частиц может быть различным – «ядро-оболочка», наполненная частица и т.п. Но в любом случае, вне зависимости от строения таких частиц, диоксид титана может приводить к изменению в структуре макромолекул полиметилметакрилата. Например, макромолекула может принимать такую конформацию, что сложноэфирные связи элементарных звеньев полимера будут ориентированы в сторону дисперсионной среды. Т.к. сложноэфирная группа обладает небольшим дипольным моментом, можно ожидать появления ориентационных взаимодействий между ними, и, как следствие, появление определенных структур.
Литье при низком давлении
Одной из разновидностей литья под давлением термопластичных материалов является т.н. литье при низком давлении [30]. Литье при низком давлении применяется для изготовления крупногабаритных изделий (столешницы, двери, различные панели, подставки и пр.), а также изделий с декоративной поверхностью, п ...
Масс-спектрометрический и спектрофотометрический анализ
Масс-спектрометрический анализ образца ЭМФ Gd@C82 в толуоле проводили на масс спектрометре с электроспрейным ионным источником LCMS 2020 (Liquid chromatograph mass spectrometer, Shimadzu). Оптический спектр образца ЭМФ Gd@C82 в толуоле регистрировали в диапазоне длин волн от 300 до 1100 нм на спект ...
Полиэлектролиты
Макромолекулы приобретают ряд характерных электрических, конфигурационных и гидродинамических свойств, если мономерные звенья полимерной цепи содержат ионногенные группы. Такие полимеры называются полиэлектролитами. Макромолекула полиэлектролита в растворе состоит из полииона, окруженного эквивален ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.