При этих условиях этилен расходуется примерно следующим образом: 95% - на образование этанола; 2-3% - этилового эфира; 1-2% - ацетальдегида; 1-2% - полимеров и др. продуктов.
В приведенных условиях гидратации максимальный выход (равновесный) за один проход может составить только 10%; практически он достигает лишь 5%, что приводит к необходимости многократной циркуляции реакционной газовой смеси через слой катализатора.
Увеличение объемной скорости является методом интенсификации рециркуляционного процесса, поэтому процесс синтеза этанола ведут с большими объемными скоростями.
Малая конверсия этилена и низкая производительность катализатора обусловили необходимость работы не с разбавленным, а с концентрированным 98-99% этиленом. Даже при таком концентрированном этилене, т.е. при содержании в нем до 2% инертных примесей, они накапливаются в рециркулирующем газе, что приводит к снижению содержания этилена. Нижний предел концентрации этилена принят сегодня 85%, что соответствует содержанию инертных примесей до 15%. Поэтому необходим отвод последних с частью рециркулирующего газа (отдувка), которая составляет 13% от подачи свежего 98%-ного этилена.
Из рециркулирующей реакционной газовой смеси необходим непрерывный отвод получаемого этанола. Практически удаление этанола производится обычным методом конденсации, при этом вода как менее летучий компонент конденсируется с большей полнотой. Это приводит к огромным затратам тепла (учитывая крупнотоннажность производства этанола) на получение водяного пара, из которого только 5% расходуется на конденсацию этанола, а остальные 95% - на конденсацию воды. Поэтому возникает острая необходимость в утилизации тепла непрореагировавшего водяного пара путем эффективного теплообмена между потоками выходящего из реактора и входящего в него газовых смесей, а также путем генерации вторичного водяного пара в котлах-утилизаторах. Относительно низкий температурный потенциал тепла (250-3000С) приводит к громоздкой системе теплообмена и теплоиспользующих аппаратов.
Однако интенсивная циркуляция реакционной газовой смеси, кратность которой (при выходе этанола около5%) достигает 20, и сравнительно невысокая теплота реакции позволяет весьма просто реализовать процесс в адиабатическом реакторе колонного типа. Выделяющаяся теплота реакции повышает температуру реагирующего газового потока лишь на 15-200С, что допустимо.
Несмотря на весьма малую летучесть фосфорной кислоты, унос ее в виде паров при такой значительной рециркуляции реакционной газовой смеси и высокой температуре достигает 0,4-0,5кг/ч с 1м3 катализатора, что может вызвать коррозию аппаратуры и ограничивает длительность нормальной работы катализатора до 500-600 часов. В связи с этим была разработана технология непрерывной подачи свободной фосфорной кислоты в реакционную газовую смесь на входе в реактор, нейтрализации ее щелочью на выходе из реактора и регенерация из полученных при нейтрализации солей. Это позволило увеличить длительность работы катализатора до 1500 часов, заметно сократить расход фосфорной кислоты и значительно уменьшить коррозию оборудования. Такой процесс можно проводить в стальной аппаратуре.
Из приведенной физико-химической характеристики процесса можно вывести основные положения, которые были приняты при разработке существующей технологической схемы.
1. Необходимо построить схему по принципу многократной циркуляции реакционной газовой смеси через реактор с отводом целевого продукта – этанола – конденсацией;
2. В качестве исходного продукта следует применять чистый этилен с минимальным содержанием инертных примесей, которые накапливаются в реакционной смеси и частично отводятся с рециркулирующей газовой смесью в виде «отдувки»;
3. Повышение давления процесса ограничено из-за опасности конденсации воды, снижающей активность катализатора;
4. Процесс необходимо проводить при эквимолярном или близком к нему соотношении этилен / водяной пар;
5. Необходимо наиболее полно регенерировать тепло, расходуемое на получение водяного пара;
6. Возможно применение адиабатического реактора простейшей конструкции;
7. Целесообразно подпитывать поступающую в реактор реакционную газовую смесь свежей фосфорной кислотой, необходима нейтрализация паров кислоты на выходе из реактора, включая регенерацию ее из выпавших солей.
Перегруппировка Бекмана
Перегруппировка Бекмана – изомеризация кетоксимов в N-замещенные амиды карбоновых кислот под действием кислотных агентов. Механизм реакции: Реакция экзотермична. Кислотными агентами служат полифосфорные кислоты, пентахлорид и пентаоксид фосфора, хлорангидриды сульфокислот, карбоновых кислот и др. П ...
Строение ацетиленов
Атомы углерода в ацетилене имеют sp-гибридизацию и соединены одной s - и двумя p -связями. Поэтому молекула ацетилена линейна (валентный угол 180° ). Длина связи С-С составляет 121 пм (для сравнения - в этане 154 пм, в этилене 134 пм), длина связи С-Н – 106 пм (в этане 110 пм, в этилене 107 пм). Эн ...
Водород-натрий-катионитовое умягчение воды
Обработка воды водород-катионированием (Н-катионированием) основана на фильтровании ее через слой катионита, содержащего в качестве обменных ионов катионы водорода. Процесс описывается следующими реакциями: При Н-катионировании воды (табл. 20.6) значительно снижается ее рН из-за кислот, образующихс ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.