Тепловое поведение полимеров является их важнейшей характеристикой. Большинство пластиков отчетливо реагирует на, как принято говорить, температуру. Причина этого заключается в цепном макромолекулярном строении полимеров. Чем подвижнее кинетические фрагменты макромолекул, тем рельефнее их реакция на интенсивность теплового поля. Подвижность же макроцепей и, следовательно, температурная деформируемость и прочность определяются химическим строением, физической организацией полимеров (частично кристаллизующиеся или аморфные), морфологией их надмолекулярной структуры (пачечная, фибриллярная, сферолитная, сетчатая) и другими факторами. Чем ниже физико-механические свойства термопласта, тем он чувствительнее к изменениям температуры. Так, полипропилен, прочность и жесткость которого позволяет его отнести к конструкционным материалам, при нагреве до 80 °С теряет до 25 % стандартной прочности при изгибе, в то время как ПЭВП уже при 60 °С сохраняет лишь половину исходной прочности. Сходные соотношения наблюдаются при испытаниях полиолефинов на растяжение и изгиб (рис.1).
Рис. 1. Зависимость относительной прочности при растяжении от температуры частично кристаллизующихся термопластов
Перечень агрессивных агентов, влияющих на свойства полимерных материалов, чрезвычайно широк. Это минеральные и органические кислоты и их водные растворы, растворы щелочей и окислителей, алифатические и ароматические растворители, а также горюче-смазочные материалы.
Воздействие агрессивной среды на полимер может сопровождаться его набуханием, диффузией среды в полимер и химическим взаимодействием, приводящим к деструкции пластика.
На определение стойкости материала к агрессивным средам имеются государственные стандарты, определяющие сопротивляемость в баллах. По ГОСТу 12020 стойкость к агрессивным средам оценивается по изменению их массы по 5-балльной шкале: 5 – высокая стойкость; 4 – удовлетворительная; 3 – материал стоек не во всех случаях; 2 – стойкость недостаточна; 1 – материал не стоек и быстро разрушается.
Таблица 4. Сравнительная химическая стойкость полиолефинов в различных агрессивных средах числитель – холодные среды, знаменатель – горячие среды.
|
Материал |
Кислоты |
Растворы |
минеральные масла |
растворители алифатические |
Растворители ароматические | |||||
|
минеральные |
органич. разбав-ленные |
органич. нераств. в воде |
минера-льных солей |
щело-чей |
окис-лите-лей | |||||
|
средняя конц. |
высокая конц. | |||||||||
|
ПЭ |
5/5 |
5/3 |
5/4 |
3/2 |
5/5 |
5/5 |
4/2 |
4/2 |
3/2 |
1/1 |
|
ПП |
5/5 |
5/3 |
5/4 |
5/4 |
5/5 |
5/5 |
4/3 |
5/4 |
3/2 |
1/1 |
Физико-химические основы и принципиальная схема процесса
прямого синтеза
В основе прямого синтеза концентрированной азотной кислоты лежит взаимодействие жидкого тетроксида азота с водой и газообразным кислородом под давлением 5 МПа, протекающее по уравнению: Необходимое условие этого процесса — предварительное получение жидкого тетроксида из нитрозного газа. 100% -ный о ...
Получение и свойства амфифильных полимеров N-винилпирролидона
В качестве метода синтеза амфифильных производных поли-N-винилпирролидона, содержащих концевые гидрофобные группы, в данной работе использован двухстадийный подход, когда на первой стадии проводилась радикальная полимеризация соответствующих мономеров в присутствии инициаторов, генерирующих первичн ...
Активационный анализ
При облучении нейтронами, протонами и другими частицами высокой энергии многие нерадиоактивные элементы становятся радиоактивными. Активационный анализ основан на измерении этой радиоактивности. Хотя в принципе для облучения могут быть использованы любые частицы, наибольшее практическое значение им ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.