Тепловое поведение полимеров является их важнейшей характеристикой. Большинство пластиков отчетливо реагирует на, как принято говорить, температуру. Причина этого заключается в цепном макромолекулярном строении полимеров. Чем подвижнее кинетические фрагменты макромолекул, тем рельефнее их реакция на интенсивность теплового поля. Подвижность же макроцепей и, следовательно, температурная деформируемость и прочность определяются химическим строением, физической организацией полимеров (частично кристаллизующиеся или аморфные), морфологией их надмолекулярной структуры (пачечная, фибриллярная, сферолитная, сетчатая) и другими факторами. Чем ниже физико-механические свойства термопласта, тем он чувствительнее к изменениям температуры. Так, полипропилен, прочность и жесткость которого позволяет его отнести к конструкционным материалам, при нагреве до 80 °С теряет до 25 % стандартной прочности при изгибе, в то время как ПЭВП уже при 60 °С сохраняет лишь половину исходной прочности. Сходные соотношения наблюдаются при испытаниях полиолефинов на растяжение и изгиб (рис.1).
Рис. 1. Зависимость относительной прочности при растяжении от температуры частично кристаллизующихся термопластов
Перечень агрессивных агентов, влияющих на свойства полимерных материалов, чрезвычайно широк. Это минеральные и органические кислоты и их водные растворы, растворы щелочей и окислителей, алифатические и ароматические растворители, а также горюче-смазочные материалы.
Воздействие агрессивной среды на полимер может сопровождаться его набуханием, диффузией среды в полимер и химическим взаимодействием, приводящим к деструкции пластика.
На определение стойкости материала к агрессивным средам имеются государственные стандарты, определяющие сопротивляемость в баллах. По ГОСТу 12020 стойкость к агрессивным средам оценивается по изменению их массы по 5-балльной шкале: 5 – высокая стойкость; 4 – удовлетворительная; 3 – материал стоек не во всех случаях; 2 – стойкость недостаточна; 1 – материал не стоек и быстро разрушается.
Таблица 4. Сравнительная химическая стойкость полиолефинов в различных агрессивных средах числитель – холодные среды, знаменатель – горячие среды.
|
Материал |
Кислоты |
Растворы |
минеральные масла |
растворители алифатические |
Растворители ароматические | |||||
|
минеральные |
органич. разбав-ленные |
органич. нераств. в воде |
минера-льных солей |
щело-чей |
окис-лите-лей | |||||
|
средняя конц. |
высокая конц. | |||||||||
|
ПЭ |
5/5 |
5/3 |
5/4 |
3/2 |
5/5 |
5/5 |
4/2 |
4/2 |
3/2 |
1/1 |
|
ПП |
5/5 |
5/3 |
5/4 |
5/4 |
5/5 |
5/5 |
4/3 |
5/4 |
3/2 |
1/1 |
Хлороводород
Хлороводород, а особенно его водный 37% раствор, известный как соляная кислота, кажется простым веществом. И действительно, его химическая формула - HCl - одна из самых коротких в неорганической химии. Между тем, вопреки, а может благодаря, своей простоте, хлороводород не только широко распростране ...
Системы водо- и энергоснабжения
Предприятия химической промышленности помимо сложной организационной структуры также очень энергоемки. Для бесперебойной работы химическому предприятию необходимы мощные системы водо- и энергоснабжения. Завод «Каустик» не исключение. Вода необходимая предприятию забирается из Волги, и после очистки ...
Распределение вод на земном шаре
Подземные воды глубокого залегания расположены в десятках-сотнях метрах от поверхности земли, они пропитывают пористые горные породы, а также образуют гигантские подземные бассейны, окруженные водонепроницаемыми слоями. Вода в таких подземных резервуарах находится под давлением. Другой тип подземны ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.