Главное квантовое число n определяет энергетические уровни электрона в атоме и может принимать любые целочисленные значения начиная с единицы: n= 1, 2, 3, …
Из решения уравнения Шредингера вытекает, что момент импульса (механический орбитальный момент) электрона квантуется, т.е. не может быть произвольным, а принимает дискретные значения, определяемые формулой
Ll=ђ,
где l – орбитальное квантовое число, которое при заданномn принимает значения, l= 0, 1, …, (n – 1), т.е. всего n значений, и определяет момент импульса электрона в атоме.
Из решения уравнений Шредингера следует также, что вектор Ll момента импульса электрона может иметь лишь такие ориентации в пространстве, при которых его проекция Llz на направление z внешнего магнитного принимает квантованные значения, кратные ђ:
Llz = ђml,
где ml – магнитное квантовое число, которое при заданномl может принимать значения, ml = 0, ±1, ±2, …, ±l, т.е. всего 2l+1 значений.
Таким образом, магнитное квантовое число mlопределяет проекцию момента импульса электрона на заданное направление, причем вектор момента импульса электрона в атоме может иметь в пространстве 2l+1 ориентаций.
Наличие квантового числа ml должно привести в магнитное поле к расщеплению уровня с главным квантовым числом n на 2l+1 подуровней. Соответственно в спектре атома должно наблюдаться расщепление спектральных линий. Действительно, расщепление энергетических уровней в магнитном поле было обнаружено в 1896 г. голландским физиком П. Зееманом и получило название эффекта Зеемана [10].
Квантовые числа n, l, mlпозволяют более полно описать спектр испускания (поглощения) атома водорода.
В квантовой механике вводятся правила отбора, ограничивающие число возможных переходов электронов в атоме, связанных с испусканием и поглощением света:
1) изменение орбитального квантового числа Δl удовлетворяет условию Δl = ± l;
2) изменение магнитного квантового числа Δmlудовлетворяет условию Δml = 0, ±l.
В оптических спектрах указанные правила отбора в основном выполняются. Учитывая число возможных состояний, соответствующих данномуn, и правило отбора, серии Лаймана соответствуют переходы np → ls (n = 2, 3, …); серии Бальмера – np → 2s, ns → 2p, nd→ 2p (n = 3, 4, …) и т.д.
Переход электрона из основного состояния в возбужденное обусловлен увеличением энергии атома и может происходить только при сообщении атому энергии извне, например, за счет поглощением атомом фотона. Так как поглощающий атом находится обычно в основном состоянии, то спектр атома водорода должен состоять из линий, соответствующих переходам 1s→np (n = 2, 3, …), что находится в полном согласии с опытом[3].
Определение массовой концентрации сложных эфиров
Массовую концентрацию сложных эфиров в водке определяют фотоэлектроколориметрическим методом, который основан на измерении интенсивности окраски, полученной в процессе реакции хлорида железа с гидроксамовой кислотой, образующейся в результате взаимодействия сложных эфиров испытуемой водки с гидрох ...
Способы получения полимерных композитов на основе алюмосиликатов
Разработаны следующие методы получения композитов на основе органоглин: в процессе синтеза полимера; в расплаве; в растворе; золь-гель процесс [48]. Для получения полимерных композитов на основе органоглин наиболее широко применяются методы получения в расплаве и в процессе синтеза полимера. Получе ...
Промышленные схемы метанирования
Различают три случая применения тонкой каталитической очистки азотоводородной смеси: 1) содержание оксидов углерода в исходном газе не более 0.1%. В этом случае процесс проводят на любом никелевом катализаторе метанировния при 250-290 С или на железных плавленых катализаторах при 250-330 С. 2) соде ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.