Явление мицеллообразования представляет интерес для различных областей химии, таких как физическая химия, биохимия, химия полимеров. В частности, значительное внимание уделяется амфифильным полимерам различного строения, которые способны к самоорганизации в водных растворах, подобно низкомолекулярным поверхностно-активным веществам.
Способность к самоорганизации в полярных и неполярных средах с образованием различных агрегатов является важной характеристикой амфифильных полимеров. В водной среде амфифильные молекулы блоксополимеров типа АВ самоорганизуются с образованием мицелл.
Мицелла – устойчивое образование из определенного числа (например, нескольких десятков) молекул полимера, является простейшим агрегатом [1]. Мицеллы представляют собой образования, часто близкие к сферическим, в которых полярные группы контактируют с полярной средой (водой), а гидрофобные радикалы находятся внутри, образуя неполярное ядро.
Как и для низкомолекулярных биполярных молекул, появление агрегатов в растворах происходит выше некоторой концентрации, так называемой, критической концентрации мицеллообразования. Для водных растворов амфифильных блоксополимеров характерна аналогичная картина. Ниже критической концентрации мицеллообразования (ККМ) в растворе можно наблюдать отдельные молекулы полимера. При концентрации полимера в растворе, приближающейся к ККМ начинают образовываться мицеллы, которые находятся в термодинамическом равновесии с неассоциированными молекулами полимера. Величина ККМ зависит от целого ряда факторов: природы амфифильного полимера, длины и степени разветвления углеводородного радикала, присутствия электролитов или других органических соединений, рН раствора.
Однако основным фактором является соотношение между гидрофильными и гидрофобными свойствами полимера. Так, чем длиннее углеводородный радикал и слабее полярная группа, тем меньше величина ККМ (наиболее полно современные представления о термодинамике растворов ПАВ и процессах мицеллообразования освещены в монографии Русанова [14]).
При концентрациях ПАВ, превышающих ККМ, возможно образование нескольких типов мицелл (Рис. 3) и их агрегатов, различающихся по форме: сферические, цилиндрические, гексагонально упакованные, ламеллярные. Таким образом, мицеллы и их агрегаты можно рассматривать как одномерные, двумерные и объёмные нанообъекты.
Рис. 3. Структуры, возникающие в растворах ПАВ. 1 – мономеры, 2 – мицелла, 3 – цилиндрический агрегат мицелл, 4 – гексагонально упакованные цилиндрические агрегаты мицелл, 5 – ламинарный агрегат мицелл, 6 – гексагонально упакованные капли воды в обратной мицеллярной системе
Амфифильные полимеры с длинным углеводородным радикалом и слабой полярной группой могут растворяться в неполярных жидких фазах и практически не растворяться в воде. В этом случае при определённой концентрации полимера также наблюдается образование мицелл, которое обусловлено специфическими взаимодействиями между полярными группами амфифила. Такие мицеллы называют обратными. Форма обратных мицелл зависит от концентрации полимера и может быть различной.
Так как вода является термодинамически плохим растворителем для гидрофобной части макромолекулы, последняя образует ядро частицы, а оболочка состоит из гидрофильной части молекулы, которая также оказывает стабилизирующее влияние на систему. Триблок- и привитые сополимеры могут образовывать кроме приведенных на рис. 3 структур мицеллы со смешанной оболочкой (без разделения цепей), мицеллы с разделенной оболочкой (с боковым, радиальным разделением цепей), везикулы и др. [[8], [9]].
Для веществ, способных к самоорганизации в растворах, введен термин «число агрегации». Число агрегации может быть определено как число единичных молекул (макромолекул), объединяющихся в мицеллу. В зависимости от природы полимеров числа агрегации (n) могут изменяться от десятков до нескольких сотен, при этом будут меняться и размеры мицелл.
Термодинамические аспекты самоорганизации амфифильных полимеров, в принципе, абсолютно схожи с такими же процессами для низкомолекулярных амфифильных молекул. Способность амфифильных макромолекул к самоорганизации определяется несколькими факторами.
Выбор и основание параметров контроля и управления
Необходимо производить контроль температуры в промывной башне. В контактном аппарате необходимо контролировать температуру в 450ºС, так как /2/ только лишь при данной температуре происходит выгорание серы из колчедана. Так же при повышении данной температуры возможен выход из строя аппаратуры ...
Качество продукта контролируем УФ-спектроскопически
Получение S-метилтио-N-нитрокарбамата Водноспиртовая среда, соотношение воды к спирту 1:1. 1 г исходного S,S¢-ди(метилтио)-N-нитроимина растворяем в 10 мл спирта, добавляем 5 мл воды и прикапываем по каплям 5 мл раствора NaOH. Продолжительность дозировки 20-30 мин. После дозировки выдержка 20 ...
Краткая характеристика флавоноидов
Флавоноидами называется группа природных биологически активных веществ (БАВ) – производных бензо-γ-пирона (рисунок 1.1), в основе которых лежит фенилпропановый скелет, состоящий из С6-С3-С6 углеродных единиц. Это гетероциклические соединения с атомом кислорода в кольце [1]. Рисунок 1.1 – Струк ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.