Их тоже создают на основе керамики и полимеров, но с использованием природных слоистых неорганических структур, таких как монтмориллонит или вермикулит, которые встречаются, например, в глинах. Слой монтмориллонита толщиной ~1нм в ходе реакции ионного обмена насыщают мономерным предшественником с активной концевой группой (e-капролактамом, бутадиеном, акрилонитрилом или эпоксидной смолой), а затем проводят полимеризацию.
Слоистые нанокомпозиты на основе алюмосиликата и поли мера с низким его содержанием (справа вверху) и высоким.
Так получают слоистые нанокомпозиты с высоким содержанием керамики. Эти материалы характеризуются высокими механическими свойствами, термической и химической стабильностью. Но даже и небольшое количество алюмосиликата значительно улучшает механические и барьерные свойства полимера. Так, по сравнению с чистым полиимидом влагопроницаемость полиимидного нанокомпозита, содержащего всего 2 мас.% силиката, снижается на 60%, а коэффициент термического расширения — на 25%. Отметим, основная проблема при создании слоистых нанокомпозитов на основе глин и тому подобных керамик — обеспечить равномерное раскрытие слоистых структур и распределение мономера по материалу.
Эти материалы привлекают внимание прежде всего уникальными свойствами входящих в их состав кластеров, образованных разным количеством атомов металла или полупроводника — от десяти до нескольких тысяч. Типичные размеры такого агрегата — от 1 до 10 нм, что соответствует огромной удельной поверхности. Подобные наночастицы отличаются по свойствам (ширине полосы поглощения, спектральным характеристикам, электронному переносу) как от блочного материала, так и индивидуального атома или молекулы, причем полупроводниковые особенно сильно, даже если размер частицы достигает сотен нанометров. Так, при переходе от нанокристалла CdS к макрокристаллу ширина запрещенной зоны уменьшается от 4.5 до 2.5 эВ, время жизни на нижнем возбужденном уровне увеличивается от пикосекунд до нескольких наносекунд, от 400 до 1600°С повышается температура плавления. Нелинейные оптические свойства нанокластеров позволяют создавать на их основе управляемые квантовые светодиоды для применения в микроэлектронике и телекоммуникации.
Заполнение электронных уровней в металле и полупроводнике. Энергетическая зона металла, независимо от размера его частиц, заполнена не вся, поэтому электроны могут переходить на более высокие уровни. У полупроводника же валентная зона заполнена целиком и отделена от зоны проводимости на 2—3 эВ. Из-за малых размеров полупроводниковых нанокристаллов эти зоны расщепляются, что приводит к эффективному увеличению ширины запрещенной зоны (до 4.5 эВ).
Наночастицы проявляют также суперпарамагнетизм и каталитические свойства. При использовании кластеров металлов в качестве катализаторов наночастицы стабилизируют, например, в растворе с помощью поверхностно-активных соединений или на подложке из полимерной пленки. Несмотря на сравнительно невысокую термическую стабильность, полимерные материалы довольно часто служат матрицей, фиксирующей нанокластеры. В зависимости от того, какие свойства хотят придать конечному продукту, используют либо прозрачный полимер, либо проницаемый, либо электропроводящий и легко перерабатываемый.
Металлические (и полупроводниковые) нанокластеры можно приготовить по-разному: испарением или распылением металлов, восстановлением их солей и другими способами. В одной из первых работ кластеры серебра, золота или палладия размером 1—15 нм были диспергированы в пленку полистирола (или полиметилметакрилата) в ходе полимеризации жидкого мономера, в который предварительно осаждался металл из паров. Судя по структурным исследованиям, металлические кластеры при этом объединяются в агломераты разной величины — вплоть до нескольких десятков нанометров. Похожую структуру имеют композитные пленки, полученные одновременным осаждением паров металла и плазменной полимеризацией бензола или гексаметилдисилазана.
Альфа-метилстирол
a-Метилстирол (изопренилбензол), С6Н5С(СН3)=СН2 – подвижная бесцветная жидкость с резким спецефическим запахом; т.кип. 165,38оС, т. пл. -23,14оС, d20 0,9106 г/см3, nD 1,5386, уд. теплоемкость 0,49 кал/(г . оС), теплота испарения 96,66 ккал/моль, теплота полимеризации 8,4 ккал/моль, энтропия полимер ...
Сорбция комплексов
платиновых металлов
Параллельно с развитием экстракционных методов велись поиски сорбентов, селективных к платиновым металлам. Сорбцию выгодно отличает от жидкостной экстракции технологичность и быстрота в исполнении, а также возможность работы с многокомпонентными природными и промышленными материалами: рудами, горны ...
Окисление аминов
При окислении первичных ароматических аминов образуются в зависимости от условий различные продукты. При окислении первичных ароматических аминов кислотой Каро аминогруппа превращается в нитрозогруппу. У аминов жирного ряда процесс протекает более сложно, так как первоначально образующиеся продукты ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.