Предварительные результаты свидетельствуют, что окислительно-восстановительный баланс удовлетворительно соблюдается не только между конечными продуктами, но и в ходе каждого эксперимента при различных конверсиях реагентов.
Дополнив предложенный ранее механизм каталитического аллилирования НБД аллилацетатом можно объяснить образование всех наблюдаемых продуктов (рис.2).
В соответствии с ним формирование соединений I – VI в присутствии АФ происходит аналогично другим аллиловым эфирам.
Ключевая роль в образовании продуктов гидрирования и гидроформилирования НБД и соединений I, II, IV – VI по-видимому играет гидридный комплекс, образующийся на стадии β – гидридного переноса.
Для всех R, являющихся алкильными или арильными радикалами, распад этого интермедиата в результате восстановительного элиминирования приводит к образованию кислоты RCOOH. В случае R = H ситуация принципиальна иная. Известно, например, что в присутствии комплексов Pd, муравьиная кислота является является гидрирующим агентом и распадается с образованием CO2.
Тогда можно предположить, что формирующийся комплекс может участвовать в следующих превращениях:
Рисунок 3.2. Заключительная часть механизма каталитического аллилирования НБД аллилформиатом.
Все направления реализуются одновременно, их соотношение зависят от концентрации всех реагентов, что, в свою очередь, определяется степенью конверсии НБД.
Восстановление двойных связей, вероятно связано с образованием в реакционной смеси муравьиной кислоты, являющейся гидрирующим агентом, т. к. при ее разложение, по одному из возможных путей, в присутствии катализатора, образуется углекислый газ и водород. При анализе газовой фазы в реакторе действительно был обнаружен углекислый газ, что подтверждает наши предположения.
Следует отметить, при анализе реакционной смеси молекулярный водород и муравьиная кислота – потенциальные продукты восстановления – не обнаружены. Возможно, вся образующаяся кислота расходуется на образование продуктов гидрирования.
Заметим, если аллилирующим агентом является аллилацетат, в ходе реакции образуется устойчивая уксусная кислота. Она оказывает дезактивирующее действие на катализатор, накапливаясь в реакторе. Таким образом, при использовании аллилформиата, как аллилирующего агента, образуется более устойчивая каталитическая система. Следует также отметить, что по качественным наблюдениям реакция с аллилформиатом протекает значительно быстрее, чем с аллилацетатом. Этот факт требует дополнительного исследования.
Необходимо также отметить, что в ходе реакции образуется углекислый газ. Причем СО2, образующийся в качестве побочного продукта реакции, абсолютно индеферентен и не оказывает дезактивирующего влияния на каталитическую систему.
Приготовление композитных графитовых электродов
Композитные графитовые электроды, содержащие гадолиний, готовили по следующей методике: (1) В графитовом стержне для спектрального анализа 6х160 мм с двух сторон по центру высверливали отверстия диаметром 2.9 мм. (2) Приготавливали шихту – порошок гидрида гадолиния смешивали с графитовой пудрой и г ...
Методы качественной идентификации флавоноидов
Для обнаружения различных видов флавоноидов используются качественные реакции. Они необходимы для подтверждения нахождения той или иной структуры на этапе идентификации флавоноидов. Наиболее характерными реакциями являются следующие: 1) Цианидиновая проба (проба Шинода) Общей реакцией на флавоноидн ...
Выводы
1. Путём проведения радикальной полимеризации N винилпирролидона в присутствии меркаптоуксусной кислоты с последующим введением концевого длинноцепного алифатического радикала, синтезированы амфифильные полимеры, содержащие одну концевую гидрофобную группу. 2. Изучено влияние количества вводимого п ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.