Сокращения выбросов токсичных соединений можно достичь с одной стороны – совершенствованием технологических процессов, а с другой – разработкой способов их уничтожения или уменьшения концентрации путем химической переработки в нетоксичные соединения.
К технологическим методам по сокращению выбросов оксидов азота можно отнести следующие методы [6]:
· уменьшение температуры процесса горения топлива (за счет подачи воды или водяного пара в топку, а также снижения подогрева воздуха или рециркуляции дымовых газов);
· снижение концентрации окислителей в горячей смеси путем уменьшения избытка воздуха или применения ступенчатого сжигания;
· нетрадиционные методы сжигания (горение в кипящем слое или каталитическое сжигание).
Химические способы очистки от оксидов азота промышленных и выхлопных газов подразделяются на [6]:
· сорбционные методы поглощения оксидов азота с использованием различных адсорбентов (цеолиты, кокс, водные растворы щелочей);
· окислительные методы, основанные на окислении NO в NO2 с последующим поглощением различными поглотителями;
· восстановительные методы, основанные на восстановлении NO до молекулярного N2. Их реализация возможна как без использования катализаторов (гомогенное селективное восстановление аммиаком), так и с их применением – каталитическое разложение оксидов азота на элементы и реагентное каталитическое восстановление.
Наиболее перспективными и эффективными методами удаления оксидов азота в настоящий момент признаны каталитические методы.
Прямое термическое разложение NOх протекает по реакциям (1-3) при температурах 800–1000°С [18-36]:
2N2O Þ 2N2 + O2
2NO Þ N2 + O2
(3) 2NO2 Þ N2 + 2O2
Наиболее экологически чистым способом очистки отходящих газов от оксидов азота является их разложение на азот и кислород по реакциям (1-3) на твердофазных катализаторах, т. к. этот метод не требует дополнительного введения восстановителя в зону реакции.
Однако в литературе [10-11] отмечается, что применение этого метода на практике весьма проблематично из-за кинетических затруднений, возникающих в реакции конверсии NOх на молекулярный азот и кислород. Тем не менее изучение реакций каталитического разложения NOх представляет большой научный интерес. С точки зрения фундаментального катализа на основе исследования простейшей реакции (2) можно получить данные об предполагаемых стадиях более сложных процессов.
Открытие процесса селективного каталитического восстановления NOx в присутствии избытка O2 имело огромное значение с точки зрения доказательства принципиальной возможности восстановления оксидов азота в окислительной атмосфере [113]. В последующее десятилетие количество публикаций, посвященных изучению СКВ NOx, неуклонно росло.
Изучению активных центров на поверхности катализатора, механизмов и интермедиатов данных реакций с помощью методов ИК-спектроско-пии, ТПД, ТПР (термопрограммированная реакция), УФ-Вид, РФА (рентгеновская дифракция), РЭС (рентгеноэлектронная спектроскопия), EXAFS (спектроскопия тонкой структуры дальнего края рентгеновского поглощения), XANES (спектроскопия ближнего края рентгеновского поглощения), метода меченных атомов, ИК-Фурье (ИК-спектроскопия с фурье-преобразованием), посвящено значительное число работ [13, 23, 28, 35, 41, 55, 61, 68, 80, 81, 83, 84, 103, 114-156]. Степень изученности промежуточных соединений, элементарных стадий процесса различна. Несмотря на большое количество литературы по каталитическому превращению и восстановлению NOx единого мнения по этим вопросам до сих пор не сформировано. Не в полной мере установлен тип активных центров катализаторов, структура интермедиатов, роль кислорода и т.д.
Каталитическое восстановление NOx восстановителями (реагентами) в присутствии О2 или воздуха в общем виде можно представить следующей схемой (4):
NOх + В + O2 Þ N2 + ВО + (1-у) O2 (4),
где В – восстановитель,
ВО – продукты превращения В;
у - количество О2, израсходованного в реакции.
Схема предусматривает расход В по двум направлениям (5) и (6):
1. Восстановитель расходуется на целевое восстановление NOx до N2, в результате чего образуется стехиометрическое количество ВО:
NOх + В ÞN2 + ВО(5)
При этом количество свободного кислорода в процессе восстановления не меняется.
2. Восстановитель В частично окисляется О2 с образованием ВО:
В + 1/2О2 Þ ВО (6)
Строго говоря, продукты окислительного превращения В до ВО в реакциях (5) и (6) могут быть различны. Следует отметить, что (6) является побочной по отношению к целевой реакции (5). В отсутствии (6) реакцию (5) принято называть селективным каталитическим восстановлением оксидов азота (СКВ NOx).
В качестве катализаторов для данного процесса используют металлы платиновой группы, оксиды металлов переменной валентности, цеолиты. В последнее время одними из наиболее эффективных и перспективных катализаторов СКВ NOx считаются каталитические системы на основе столбчатых глин (PILC – pillared clays). Восстановителями NOx могут служить Н2, СО, а также различные углеводороды.
Родниковая и ключевая вода
Родником, или ключом обозначается небольшой водный поток, бьющий непосредственно из земных недр. Родники, как выходы грунтовых и подземных вод на поверхность, являются уникальными естественными водоёмами. Они имеют большое значение в питании и других поверхностных водоёмов, поддержании водного бала ...
Равновесные диаграммы потенциал-pH
Одним из наиболее значительных достижений электрохимии 60-х годов является построение диаграмм pH-потенциал для всех важных металлов, названных в честь автора диаграммами Пурбе. Диаграммы характеризуют, прежде всего, состав водного раствора и термодинамическую устойчивость твердой фазы (металла, ок ...
Характеристика основных алкалоидов
Алкалоиды, составляющие основные структурные классы – пиридиновые (никотин), пиперидиновые (лобелин), тропановые (гиосциамин), хинолиновые (хинин), изохинолиновые (морфин), индольные (псилоцибин, активное начало мексиканских галлюциногенных грибов, резерпин и стрихнин), имидазольные (пилокарпин), с ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.