Новая химия » Свойства растворов высокомолекулярных соединений

Свойства растворов высокомолекулярных соединений

Страница 3

Широкое распространение для определения молекулярной массы полимера с гибкими и длинными макромолекулами получило уравнение Марка-Куна-Хаувинка:

[h]=КМа,

где К и а – постоянные для данного гомологического ряда и растворителя.

В данном случае связывают с молекулярной массой полимера характеристическую вязкость [h], т.к. именно этой величиной оценивается прирост вязкости раствора, вызванный наличием макрочастиц и их вращением

Для разбавленных растворов, полимеров широко используется зависимость удельной вязкости от концентрации.

- уравнение Хаггинса,

включающая константу К/, которая характеризует взаимодействие полимера с растворителем. Чем хуже растворитель, тем лучше значения К/. Формула удобна для экстраполяции [h] при бесконечном разбавлении.

[h]характеристическая вязкость, она оценивает прирост вязкости раствора, вызванный наличием макрочастиц и их вращений.

.

Представлены три наиболее распространенных метода измерения вязкости:

Капиллярный метод (вискозиметр Оствальда).

В специальный капилляр заливают определенный объем жидкости V (см3) и она вытекает под давлением Р (дин/см2) в течение времени t(сек), высота l и радиус r. Пуазейль показал:

, где h - коэффициент вязкости.

Чаще проводят сравнительное определение вязкости. Для этого измеряют время истечения t и t1 одинаковых объемов испытуемой и стандартной жидкости, тогда

,

где g - плотность.

1. Метод падающего шарика.

Измеряется скорость v, с которой шарик из известного материала падает в вязкой среде. Стокс вывел уравнение:

,

где r – радиус шарика;

r1 – плотность шарика;

r2 – плотность среды.

Можно проводить и относительные измерения:

.

2. Метод вращающегося цилиндра.

Внешний цилиндр вращается с постоянной скоростью. От него начинает вращаться жидкость в сосуде, а затем и сам внутренний цилиндр, подвешенный внутри на нити. По углу закручивания внутреннего цилиндра a и постоянной угловой скоростью w в двух различных жидкостях, для одной из них h известна.

.

После коагуляции структура дисперсных систем приобретает некоторое постоянство во взаиморасположении частиц, т.е. свободнодисперсная система переходит в связаннодисперсную. Структура этих систем характеризуется вязкостью, упругостью, пластичностью, прочностью. Эти свойства и называются структурно-механическими и зависят от интенсивности взаимодействия частиц со средой и между собой.

Анализ многообразия свойств в дисперсных системах позволил П.А. Ребиндеру разделить их на два основных класса, различающихся по видам взаимодействия частиц дисперсной фазы. Исходя из того, что коагуляция соответствует первичному и вторичному минимуму, на потенциальной кривой взаимодействия частиц, он предложил различать конденсационно-кристаллизационные и коагуляционные структуры. Конденсационно-кристаллизационное структурообразование, отвечающее коагуляции в первичном минимуме (яме), происходит путем непосредственного химического взаимодействия между частицами и их срастание с образованием жесткой объемной структуры.

Если частицы аморфные, то структуры, образующиеся в дисперсных системах называют конденсационными, если частицы кристаллические, то – кристаллизационным. При непосредственном срастании частиц механические свойства структур соответствуют свойством самих частиц. Первый тип структуры характерен для связно-дисперсных систем, т.е. систем с твердой дисперсионной средой. Такие структуры придают телам прочность, хрупкость и не восстанавливаются после разрушения. Течение такой системы возможно при наличии вакансий решетки частиц, т.е. незанятых частицами узлов, а также другими эффектами решетки. При деформировании кристаллоподобной структуры в ней возникают упругие напряжения, которые со временем исчезают, благодаря постепенному перемещению вакансий. Скорость этого перемещения может быть ограничена, что приводит к дилатантному типу зависимости, т.е. к увеличению вязкости с ростом напряжения. Начальная вязкость обратно пропорциональна концентрации вакансий. При отсутствии потенциального барьера Umax = 0 происходит непосредственный (фазовый) контакт частиц h0 = 0. Перекристаллизация дисперсной фазы в точках контакта ведет к образованию прочной, но хрупкой структурной сетки. Такие структуры называются кристаллизационными.

Страницы: 1 2 3 4

Еще по теме:

Химическое осаждение
Среди химических методов получения пленок последнее время довольно широко развивается т.н. метод спрей-пиролиза, заключающийся в распылении на разогретые подложки аэрозолей, включающих термически разлагающиеся соли соответствующих компонентов сложных или простых оксидов. Применяя данный способ, сле ...

Структура кристалла графита
Структура графита состоит из непрерывного ряда слоев параллельных оснований плоскости гексагонально связанных атомов углерода. Структура графита является типичным примером слоистой решетки. Каждая сетка (слой) толщиной в один атом представляет собой одну молекулу, простирающуюся через весь кристалл ...

Николай Яковлевич Демьянов
К представителям школы Марковникова следует отнести также одного из наиболее выдающихся русских органиков с мировым именем — академика Н. Я. Демьянова. Широкую известность у нас и за границей приобрели классические работы Демьянова в области изучения изомеризации циклических углеродистых соединений ...

Идеи алхимии


Идеи алхимии

Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.

Категории

Copyright © 2018 - All Rights Reserved - www.chemitradition.ru
Copyright © 2025 - All Rights Reserved - www.chemitradition.ru