,
где j - объемная концентрация дисперсной фазы в зоне;
h0 - динамическая вязкость дисперсионной среды;
a - коэффициент, зависящий от формы частиц.
Видоизменив, получим:
- относительная вязкость
- удельная вязкость = hотн-1
Из уравнения следует, что:
1) h пропорциональна концентрации дисперсной фазы;
2) hдисп. системы>hдисп. среды
Для концентрированных систем уравнение Эйнштейна не применимо. Это объясняется целым рядом причин:
1. В жидкости около частиц возникает макропоток, затрудняющий движение системы;
2. Сольватация частиц. Оно проявляется в увеличении объема частиц за счет адсорбции дисперсионной среды;
3. Проявление сил отталкивания между частицами, несущими одинаковые заряды. Смолуховский показал, что hзаряженных частиц больше, чем hнезаряженных.
,
где h0 – вязкость среды;
n - удельная электропроводность;
r - радиус частиц;
e - диэлектрическая проницаемость.
Структурная вязкость - вязкость структурированных систем, т.е. систем, где наблюдается явная тенденция образования пространственных молекулярных сеток между частицами дисперсной фазы. Они не подчиняются закону Ньютона и в случае образования структуры течение системы начинается лишь тогда, когда напряжение сдвига Р превысит какое-либо критическое значение , необходимое для разрушения структуры, т.е. когда начинает выполняться условие Р > . Такое течение Бингам назвал пластическим, а критическое напряжение сдвига (предельное) – пределом текучести.
- уравнение Бингама,
где h - вязкость, отвечающая пластическому течению системы или пластическая вязкость;
dU/dx – градиент скорости, если = 0, то уравнение переходит в уравнение Ньютона.
Из рис. 5.1.2.1 видно: Бингам считал, что течение начнется сразу после превышения . В этом случае
Реальные системы имеют зависимость, показанную на рис. 5.1.2.2. Причина отличия в том, что структура разрушается не сразу, а по мере увеличения градиента скорости движения жидкости. Можно различить 3 критических напряжения:
1. f – минимальный предел текучести, соответствующий началу течения (началу разрушения системы).
2. B – предел текучести по Бингаму
3. max – максимальный предел текучести, соответствующий значению Р, когда структура разрушилась полностью.
Теория Эйнштейна была использована Штаудингером для установления формулы вязкости разбавленных растворов полимеров. Для растворов, содержащих палочкообразные макромолекулы, должно соблюдаться соотношение
,
где приведенная вязкость; hуд = КМС
Удельная вязкость прямо пропорциональна концентрации и молекулярной массе полимера; К определяют независимым методом, например, по растворам полимеров с известной молекулярной массой М. Она зависит от данного гомологического ряда и растворителя; С – массовая концентрация полимера.
Уравнение справедливо лишь для полимеров с короткими жесткими цепями, которые могут сохранять палочкообразную форму. Гибкие молекулы с длинными цепями, обычно свертываются в клубок, что уменьшает сопротивление движению. При этом К изменяется и зависимость становится нелинейной.
Порошки
Порошками называются высококонцентрированные дисперсные системы, в которых дисперсной фазой являются твердые частицы, а дисперсионной средой — воздух или другой газ. Условное обозначение: Т/Г
. В порошках частицы дисперсной фазы находятся в контакте друг с другом. Традиционно к порошкам относят бол ...
Катионные ПАВ
Большинство катионных ПАВ содержат атом азота, несущий положительный заряд, т. е. относятся к аминам или четвертичным аммониевым соединениям. Амины проявляют свойства ПАВ только в протонированном состоянии; поэтому их нельзя использовать при высоких рН. Напротив, четвертичные аммониевые соединения ...
Свойства и применение полиолефинов. Свойства и применение полипропилена
Полипропилен в отличие от полиэтилена и сополимеров этилена является более легким, жестким и прозрачным полимером, обладающим блеском и высокими механическими свойствами (наилучшая среди термопластов прочность при изгибе). Полипропилен обладает высокой пространственной регулярностью, приводящей к к ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.