Новая химия » Усовершенствование технологии установки висбрекинга » Описание технологической схемы очистки углеводородного газа висбрекинга

Описание технологической схемы очистки углеводородного газа висбрекинга

Страница 1

Углеводородный газ висбрекинга из емкостей Е-101 и Е-103 поступает в низ абсорбера К-104, предназначенного для моноэтаноламиновой очистки углеводородных газов от сероводорода. Расход замеряется прибором поз.FI 345.

Регенерированный раствор МЭА из узла регенерации насыщенного раствора МЭА поступает в водяной холодильник Т-115 и далее в емкость Е-104. Температура в емкости контролируется прибором поз. TI 1024.

Наверх абсорбера К-104 подается регенерированный 15 % раствор МЭА насосом Н-110/1,2 из емкости Е-104. Расход раствора МЭА регулируется клапаном-регулятором, который установлен на линии подачи раствора МЭА в абсорбер К-104. Расход раствора МЭА устанавливается на уровне обеспечивающей температуру верха абсорбера К-104, не выше 50 0С прибор поз. TI 1019.

С выкида насоса Н-110/1,2 регенерированный раствор МЭА направляется на установку ЭЛОУ-АВТ-6.

Уровень в Е-104 регулируется прибором поз.LICA 446, клапаном-регулятором поз.LV 446. Предупредительная сигнализация срабатывает при минимальном (20 % шкалы прибора) и максимальном (90 % шкалы прибора) значении уровня поз.LICA 446. Аварийная сигнализация и блокировка срабатывает при снижении уровня в Е-104 до минимально допустимого значения (поз.LSA 447), автоматически отключается насос Н-110/1,2.

Емкость Е-104 подключена к системе азотного дыхания и гидрозатвору Е-112.

Режим работы колонны К-104:

· давление – не выше 0,3 МПа (3,0 кгс/см2);

· температура – не выше 50 °С.

Колонна-абсорбер К-104 оборудована перекрестноточными насадочными модулями в количестве 25 шт. Из куба абсорбера К-104 насыщенный раствор МЭА забирается насосом Н-109/1,2 и подается в емкость Е-105, где происходит отстаивание углеводородов, унесенных раствором МЭА. В емкость Е-105 поступает также насыщенный раствор МЭА из узла моноэтаноламиновой очистки газа установки ЭЛОУ-АВТ-6. Отделившиеся углеводороды от раствора МЭА из емкости Е-105 насосом Н-111 откачиваются в емкость Е-101. При снижении уровня углеводородов до 20 % и повышении уровня до 80 % шкалы прибора поз.LIA 439 включается предупредительная сигнализация. При дальнейшем снижении уровня до минимального включается аварийная сигнализация и автоматически отключается насос Н-111.

Расход откачиваемого с низа К-104 насыщенного раствора МЭА регулируется с коррекцией по уровню в К-104 клапаном-регулятором, установленным на трубопроводе нагнетания насоса Н-109/1,2. При снижении уровня в К-104 до 10 % и повышении до 80 % шкалы включается предупредительная сигнализация. При снижении уровня до минимального включается аварийная сигнализация и отключается насос Н-109/1,2.

Уровень в зоне вывода насыщенного раствора МЭА из емкости Е-105 регулируется клапаном-регулятором, который установлен на трубопроводе нагнетания насоса Н-112/1,2, подающего насыщенного раствор МЭА на узел регенерации.

Емкость Е-105 соединена уравнительной линией с К-104 для поддержания постоянного давления в Е-103.

Очищенный углеводородный газ висбрекинга с верха абсорбера К-104 направляется в сепаратор Е-109, далее подогревается в Т-112 и подается в печь П-104 в качестве топлива, и частично сбрасывается в топливную сеть завода.

1.3.4. Описание теплотехнической схемы узла утилизации тепла

Подготовка питательной воды.

Для приготовления питательной воды используется химочищенная вода (ХОВ), подаваемая из сети предприятия. ХОВ поступает в емкость Е-201. Уровень в Е-201 поддерживается клапаном-регулятором, установленным на линии подачи ХОВ в емкость Е-201.

Из емкости Е-201 ХОВ насосом Н-201/1,2 подается в теплообменники Т-201 Т-203, где нагревается до 85°С. Нагрев в Т-201, Т-203 осуществляется отсепарированной продувочной водой из отделителя воды Е-205, затем циркулирующей водой после воздухоподогревателя ВП-201/1,2.

Затем ХОВ нагревается в охладителе выпара Т-202 и поступает в деаэратор атмосферного типа Е-202, в котором происходит дегазация питательной воды. Уровень в деаэраторе поддерживается, клапаном-регулятором который установлен на линии подачи ХОВ в Е-202.

Страницы: 1 2

Еще по теме:

Оптические методы определения флавоноидов
Спектрофотометрический и фотоколориметрический анализы являются разновидностями молекулярно-абсорбционного спектрального анализа. Сущность молекулярно-абсорбционного спектрального анализа заключается в качественном и количественном определении веществ по их спектрам поглощения. Физической основой с ...

Литье при низком давлении
Одной из разновидностей литья под давлением термопластичных материалов является т.н. литье при низком давлении [30]. Литье при низком давлении применяется для изготовления крупногабаритных изделий (столешницы, двери, различные панели, подставки и пр.), а также изделий с декоративной поверхностью, п ...

Константин Сигизмундович Кирхгоф (1764—1833)
Русский химик. Родился в г. Тетерове (Мекленбург-Шверин, Германия). В 1792—1802 гг. помощник директора, затем директор Главной аптеки в Петербурге. Академик Петербургской АН (с 1812, член-корреспондент с 1807). В области органической химии Кирхгоф сделал в 1811 г. Замечательное открытие: ему впервы ...

Идеи алхимии


Идеи алхимии

Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.

Категории

Copyright © 2018 - All Rights Reserved - www.chemitradition.ru
Copyright © 2024 - All Rights Reserved - www.chemitradition.ru