Плотность литых образцов определяют методом гидростатического взвешивания согласно методике [67]. Для этого отлитую таблетку, взвешивают с точностью до 0,002 г. Погружают в жидкость, в которой исходный вторичный ПЭТФ, а также композиции на его основе не растворяются и не набухают), для удаления с поверхности таблетки пузырьков воздуха их вытирают фильтровальной бумагой. После этого образец подвешивают на очень тонкой проволоке к крючку над чашкой весов и подставляют стакан с жидкостью (с дистиллированной водой), в которой проводят определение. Стакан ставят на специальну подставку, которая не должна касаться чашки весов. Образец с проволокой погружают в воду при 20 °С и взвешивают. Затем взвешивают проволоку без образца при этом же уровне погружения. Схема прибора для определения плотно- гидростатическим взвешиванием представлена на рис. 2.3. Плотность полимерных композиций р (г/см3) вычисляют по формуле:
Ударные испытания по методу Шарпи
Ударные испытания выполнены согласно общепринятой методике Шарпи трехточечный высокоскоростной изгиб) - ГОСТ 4746-80, образцы типоразмера, имеющие следующие размеры: длина L = 50 мм, ширина В = 6 мм и толщина = 4 мм,. Ударные испытания выполнены на маятниковом копре ИТ-1/4 со малой энергии 1,0 Дж. Скорость х> ударника в момент контакта с образцом равнялась 2,9 м/с (согласно паспорту). Общий вид такой установки показан на рисунке 2.4. [69].
Ударную вязкость Ар для исходного вторичного ПЭТФ и композиций на основе вторичного ПЭТФ и органоглины определяли по формуле:
где, U - энергия разрушения образца, Дж; В - ширина образца, мм; D - толщина образца композита, мм.
Образцы для ударных испытаний получены литьем под давлением
ЮМПа на термопластавтомате «KuASY-l,6 х 2/1» (Германия) при температуре 260 °С.
Рис. 2.4. Общий вид установки для ударных испытаний по методике Шарпи.
Любые измерения сопровождаются той или иной ошибкой или погрешностью, которые можно разделить на два вида: систематические и случайные. [70]
В ходе исследования физико-химических свойств полимера проводили несколько определений, которые характеризуются воспроизводимостью полученных результатов, зависящей от случайных погрешностей, и правильностью результатов, являющейся следствием систематической погрешности.
Для оценки воспроизводимости результатов эксперимента используем методы математической статистики, разработанные для малого числа измерений п.
Доверительный интервал. При отсутствии систематической погрешности среднее арифметическое значение х не совсем совпадает с истинным значением величины. Отличие носит вероятностный характер и может быть оценено с учетом несовпадения реального t-распределения погрешностей с распределением при бесконечно большом числе определений.
Численное значение ширины доверительного интервала 5 зависит как от числа выполненных определений п, так и от выбранного значения доверительной вероятности Р:
Где tpin - коэффициент Стьюдента, численные значения которого приводятся в справочной литературе.
Полученные результаты представляют в виде интервального значения определенной величины:
что равнозначно указанию четырех величин: х, S„, п, Р.
Воспроизводимость измерения выражают также в виде относительной погрешности прямого измерения Ах (%):
Все измерения следует выполнять с одинаковой относительной недостоверностью [71].
Как известно, развитие современной техники невозможно без исследования пластических масс в особенности полимерных материалов с пониженной горючестью. Пожары, обусловленные воспламенением и горением полимерных материалов ежегодно наносят большой вред человеку. Во многих странах мира приняты специальные постановления об ограничении использования горючих полимерных материалов в строительстве промышленных и гражданских сооружений, при проектировании и создании транспортных средств, в электротехнике, электронике, производстве товаров бытового назначения. Принятие этих мер способствует интенсификации научных исследований по огнестойким полимерным материалам.
При этом пожарная опасность материалов и изделий из них определяется в технике следующими характеристиками: 1) горючестью, т.е. способностью материала загораться, поддерживать и распространять процесс горения; 2) дымовыделением при горении и воздействии пламени; 3) токсичностью продуктов горения и пиролиза - разложения веществ под действием высоких температур; 4) огнестойкостью конструкции, т.е. степенью сохранения физико-механических и функциональных свойств изделия при воздействии пламени [65]. Практически все полимеры можно условно разделить на 2 большие группы по отношению к тепловому воздействию:
Катализаторы и биокатализаторы
Катализа́тор — вещество, ускоряющее реакцию, но не входящее в состав продуктов реакции (Химическая энциклопедия). Количество катализатора, в отличие от других реагентов, после реакции не изменяется. Обеспечивая более быстрый путь для реакции, катализатор реагирует с исходным веществом, получив ...
Аффинаж палладия
Палладиевый раствор упаривается в котлах при температуре 110–120 оС. В раствор постепенно вводится аммиак. Перед введением аммиака палладий в растворе находится в виде тетрахлоропалладата(II) аммония (NH4)2[PdCl4]. В том случае, если аммиак вводится в избытке, то должна протекать конечная реакция: ...
Роль аналитического контроля
Аналитическая химия – наука о методах и средствах определения химического состава веществ и их смесей. Задачи аналитической химии: обнаружение, идентификация и определение составных частей (атомов, ионов, радикалов, молекул, функциональных групп) анализируемого объекта. Соответствующий раздел анали ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.