В указанном интервале концентраций и режимов начальные пределы пригодны для быстрого наращивания толстых слоев хрома, а конечные применяются обычно для защитно-декоративного хромирования.
Перед хромированием следует выдерживать детали в ванне без тока в течение 1–2 мин., для того чтобы их поверхность приняла температуру электролита. Включение тока производят перекидным рубильником на щите ванны так, чтобы детали подверглись сначала (в течение 15–30 сек.) анодной обработке, а затем переключают ток на процесс непосредственного хромирования.
При хромировании деталей с рельефной поверхностью в начальный момент хромирования следует кратковременно (1,5–2 мин.) повысить плотность тока на катоде в 1,5–2 раза больше номинальной.
При пользовании указанными выше режимами покрытие хромом получается „блестящим". Изменяя температуру электролита и плотности тока, можно изменять структуру, цвет и твердость хромовых покрытий. Так, матовые, серые покрытия получают при низких температурах, не превышающих 40—50 °С. При температурах, превышающих 60 °С, покрытия становятся менее твердыми и приобретают светлый, молочный оттенок [2].
Хромирование из разбавленных электролитов применяется редко, однако P.И. Бурдыкина и В.П. Горшунова показали, что может быть достигнут выход хрома по току 22-24% и скорость осаждения 0,9мкм/мин и эффективность разбавленных электролитов может превышать эффективность стандартных. При этом саморегулирующийся электролит показал себя как наиболее перспективный [6].
Пористое хромирование. При анодном растворении слоя хрома в хромовом электролите этот процесс происходит не равномерно по всей поверхности слоя, а идет наиболее интенсивно по трещинам, образованным в слое хрома при его осаждении. В результате анодного травления поверхность хрома пересекается многочисленными каналами, глубина и количество которых зависят от режимов хромирования и анодного растворения. Наличие такой сетки, пропитанной смазками, на хромированных поверхностях, работающих в условиях трения, повышает износостойкость трущихся поверхностей в 10–12 раз по сравнению с закаленной, нехромированной сталью.
Нанесение пористой сетки на слое хрома производят в том же электролите на аноде, при плотности тока 30–40 А/дм2, температуре 35–45 °С и продолжительности 5 — 10 мин [2].
В процессах хромирования электролиты загрязняются примесями металлов вследствие растворения материала деталей, а также ионами Cr3+ из-за нарушения соотношения анодной и катодной поверхностей. Повышение содержания примесных металлов существенно снижает удельную электропроводимость раствора электролита, приводит к уменьшению выхода по току, рассеивающей и кроющей способностей электролитов хромирования. Загрязнение электролитов ионами меди, железа, никеля цинка и других металлов снижает антикоррозионные свойства хромовых покрытий. В случае использования саморегулирующихся электролитов растворимость и накопление ионов посторонних металлов возрастает.
Очистку разбавленных электролитов хромирования от примесных металлов проводят ионнобменным методом с помощью сильнокислотных обменных смол. Одновременно с этим процессом идёт деструкция смол с восстановлением Cr(IV) до Cr(III). Поэтому рекомендуется проводить регенерацию раствора хромирования, пропуская его через катионитовые и анионитовые колонки.
Регенерацию концентрированных электролитов (150 – 300 г/л) применяют электрохимические методы регенерации. Анодными материалами служат свинец, его сплавы с сурьмой, серебром и оловом, графит, титан, сталь, покрытая окисью свинца или марганца и др. Катоды изготавливаются из меди или нержавеющей стали. Катодное и анодное пространство разделяют диафрагмой. Наиболее устойчивыми диафрагмами являются керамические и фторопластовые, а также изготовленные из винипора, винипласта. Диафрагмы должны обладать рядом технических свойств: химической стойкостью в агрессивных средах, низким электросопротивлением, достаточно высокой скоростью движения ионов, обеспечивающих протекание тока, и низкой скоростью перемещения других компонентов раствора, механической стойкостью, длительностью срока службы.
Линейная плотность
заряда, конденсация контрионов, полиэлектролитное набухание
Полиэлектролиты обладают способностью специфически связывать контрионы (образование ионных пар между заряженными группами полиэлектролита и контрионами, ионных тройников и более сложных комплексов). Теория Дебая-Хюккеля, строго говоря, неприменима к полиэлектролитам. Дело в том, что при не очень ма ...
Постановка задачи поиска нового технического решения
Для реактора: 1) Недостаток - большое время реакции; 2) Элемент системы, ответственный за этот недостаток - водяной холодильник; 3) Параметры этого элемента – длина, форма теплопередачи водяного холодильника; 4) Ввести в систему водяной холодильник большей длины и более сложной формы (например, шар ...
Второй этап развития Петербургского химического центра
Большое значение для развития русской химической науки, и в том числе органической химии, имела выдающаяся научная и литературная деятельность русского ученого А. И. Горбова ученика и многолетнего сотрудника А. М. Бутлерова и Д. И. Менделеева. Александр Иванович Горбов родился 11 мая 1859 г. в Моск ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.