В указанном интервале концентраций и режимов начальные пределы пригодны для быстрого наращивания толстых слоев хрома, а конечные применяются обычно для защитно-декоративного хромирования.
Перед хромированием следует выдерживать детали в ванне без тока в течение 1–2 мин., для того чтобы их поверхность приняла температуру электролита. Включение тока производят перекидным рубильником на щите ванны так, чтобы детали подверглись сначала (в течение 15–30 сек.) анодной обработке, а затем переключают ток на процесс непосредственного хромирования.
При хромировании деталей с рельефной поверхностью в начальный момент хромирования следует кратковременно (1,5–2 мин.) повысить плотность тока на катоде в 1,5–2 раза больше номинальной.
При пользовании указанными выше режимами покрытие хромом получается „блестящим". Изменяя температуру электролита и плотности тока, можно изменять структуру, цвет и твердость хромовых покрытий. Так, матовые, серые покрытия получают при низких температурах, не превышающих 40—50 °С. При температурах, превышающих 60 °С, покрытия становятся менее твердыми и приобретают светлый, молочный оттенок [2].
Хромирование из разбавленных электролитов применяется редко, однако P.И. Бурдыкина и В.П. Горшунова показали, что может быть достигнут выход хрома по току 22-24% и скорость осаждения 0,9мкм/мин и эффективность разбавленных электролитов может превышать эффективность стандартных. При этом саморегулирующийся электролит показал себя как наиболее перспективный [6].
Пористое хромирование. При анодном растворении слоя хрома в хромовом электролите этот процесс происходит не равномерно по всей поверхности слоя, а идет наиболее интенсивно по трещинам, образованным в слое хрома при его осаждении. В результате анодного травления поверхность хрома пересекается многочисленными каналами, глубина и количество которых зависят от режимов хромирования и анодного растворения. Наличие такой сетки, пропитанной смазками, на хромированных поверхностях, работающих в условиях трения, повышает износостойкость трущихся поверхностей в 10–12 раз по сравнению с закаленной, нехромированной сталью.
Нанесение пористой сетки на слое хрома производят в том же электролите на аноде, при плотности тока 30–40 А/дм2, температуре 35–45 °С и продолжительности 5 — 10 мин [2].
В процессах хромирования электролиты загрязняются примесями металлов вследствие растворения материала деталей, а также ионами Cr3+ из-за нарушения соотношения анодной и катодной поверхностей. Повышение содержания примесных металлов существенно снижает удельную электропроводимость раствора электролита, приводит к уменьшению выхода по току, рассеивающей и кроющей способностей электролитов хромирования. Загрязнение электролитов ионами меди, железа, никеля цинка и других металлов снижает антикоррозионные свойства хромовых покрытий. В случае использования саморегулирующихся электролитов растворимость и накопление ионов посторонних металлов возрастает.
Очистку разбавленных электролитов хромирования от примесных металлов проводят ионнобменным методом с помощью сильнокислотных обменных смол. Одновременно с этим процессом идёт деструкция смол с восстановлением Cr(IV) до Cr(III). Поэтому рекомендуется проводить регенерацию раствора хромирования, пропуская его через катионитовые и анионитовые колонки.
Регенерацию концентрированных электролитов (150 – 300 г/л) применяют электрохимические методы регенерации. Анодными материалами служат свинец, его сплавы с сурьмой, серебром и оловом, графит, титан, сталь, покрытая окисью свинца или марганца и др. Катоды изготавливаются из меди или нержавеющей стали. Катодное и анодное пространство разделяют диафрагмой. Наиболее устойчивыми диафрагмами являются керамические и фторопластовые, а также изготовленные из винипора, винипласта. Диафрагмы должны обладать рядом технических свойств: химической стойкостью в агрессивных средах, низким электросопротивлением, достаточно высокой скоростью движения ионов, обеспечивающих протекание тока, и низкой скоростью перемещения других компонентов раствора, механической стойкостью, длительностью срока службы.
Свойства и применение сополимеров этилена
Этилен образует сополимеры с большинством ненасыщенных соединений в присутствии как радикальных, так и ионных инициаторов. Но в технике нашли применение лишь некоторые сополимеры, обеспечивающие получение материалов с определенным комплексом свойств более экономичными способами. Сополимеры этилена ...
Идеи средневековой алхимии
Древние считали всю природу живой и одушевленной. Поэтому они были уверены, что металлы «растут и созревают» в «лоне» земли. Золото рассматривалось как вполне созревший металл, а железо — как «недозрелый». Таким образом, алхимики с помощью «химического искусства» стремились ускорить процессы «созре ...
Химическое строение и классификация кофеина
Систематическое наименование 1,3,7-триметил-1H-пурин-2,6(3H,7H)-дион Традиционные названия 1,3,7-триметилксантин, кофеин, теин Эмпирическая формула C8H10N4O2 Рег. номер CAS 58-08-2 SMILES C[n]1cnc2N(C)C(=O)N(C)C(=O)c12 Кофеи́н, C8H10N4O2 (также называемый теин, матеин, гуаранин)— алкалоид пури ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.