Любой результат измерения представляет собой случайную величину. Численное различие двух результатов может быть вызвано случайными причинами и в математической статистике (при некоторой доверительной вероятности) считается незначительным.
Если две величины различаются незначимо, то их можно рассматривать как два приближенных значения одного и тоже, общего, результата измерения.
Задача сравнения результата химического анализа состоит в том, чтобы выяснить является ли результат между величинами значимым. Для этого применяют специальные приемы называемые критериями проверки статистических гипотез.
Среди большого количества различных методов сравнения правильности результатов в качестве способов сравнения был выбран метод с использованием критерия Стьюдента, так как он прост в использовании и позволяют определить значимый результат при сравнительно малом числе степеней свобод.
Задача сравнения с математической точки зрения сводится для проверки значимости отличия случайной величины х от константы а. Решением этой задачи будет описанный в работе [50] способ, основанный на интервальной оценки неопределенности величины х. Доверительный интервал для среднего, рассчитанный по формуле Стьюдента (1.39), характеризует неопределенность значений х обусловленною случайной погрешностью.
х ± t (P, f) S (x) / (√ n) (1.38)
Если величина a входит в этот доверительный интервал и утверждать о значимости различий между х и а нет оснований. Если же величина a в этот интервал не входит, то различие между коэффициентами следует считать значимыми. Таким образом полуширина доверительного интервала t (P, f) S(x)/(√n) является критической величиной для разности │х – а│: различие является значимым если
│х – а│> t (P, f) S(x) / (√ n) (1.39)
[│х – а│/ S (x)] ´ (√ n) > t (P, f) (1.40)
Величина, стоящая в левой части выражения характеризует степень различия между х и а с учетом случайной погрешности S (x). Коэффициент Стьюдента, стоящий правой части, является критической величиной.
Результаты анализа оценки правильности данных представлены в таблице 6.
Таблица 6 - Результаты анализа оценки правильности данных для меди(II), индия(III) и селена(IV) при совместном присутствии, с учетом критерия Стьюдента (P = 0,95)
Смесь |
Аналит |
tэксп (P, f) |
tтабл (P, f) |
n |
I |
Cu |
1,43 |
2,78 |
4 |
In |
2,33 |
2,57 |
3 | |
Se |
2,60 |
2,78 |
4 | |
II |
Cu |
1,56 |
2,78 |
4 |
In |
1,54 |
3,18 |
3 | |
Se |
2,75 |
3,18 |
3 | |
III |
Cu |
0,16 |
2,56 |
5 |
In |
0,09 |
3,18 |
3 | |
Se |
1,55 |
2,78 |
4 |
Фолиевые краски
Фолиевые краски Tough Tex Plus предназначены для печати на не впитывающих материалах: пленках, самоклеящихся материалах, пластиках, металлизированных бумагах, ламинате, при этом материал, как правило, проходит предварительную обработку коронатором. Краски не содержат агрессивных растворителей и зак ...
Параметры нормального технологического режима
В технологическом процессе производства серной кислоты имеются величины, характеризующие этот процесс, так называемые параметры процесса. Совокупность значений всех параметров процесса называют /12/ технологическим режимом, а совокупность значений параметров, обеспечивающих решение целевой задачи – ...
Определение массовой концентрации лимонной кислоты
Лимонная кислота НООС–СН2–С(СООН)(ОН)–СН2–СООН относится к группе многоосновных оксикислот. Содержится в небольших количествах (0,2–0,5 г/кг) в ягодах винограда, а также образуется как вторичный продукт при спиртовом брожении. Содержание в винах составляет до 0,3 г/дм3. В виноделии разрешено исполь ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.