По результатам исследования синтезированных дисперсий ПММА можно отметить, что конверсия мономера во всех случаях достаточно высока и составляет 75-83 %. Хотя раствор сульфонола исходной концентрации имеет уровень рН равный 8,0, уровень рН синтезированных дисперсий заметно ниже. Низкое значение рН дисперсий можно объяснить гидролизом эмульгатора до алкилбензолсульфоновой кислоты в процессе синтеза.
Поверхностное натяжение дисперсий при увеличении концентрации мономера незначительно увеличивается, т.е. происходит уменьшение концентрации ПАВ в дисперсии, за счет сорбции его на большем количестве частиц полимера.
Также были синтезированы дисперсии ПММА, содержащие диоксид титана. Доля диоксида титана составляла 10 % от массы мономера. Диоксид титана предварительно перемешивали в растворе инициатора в течение 1 часа при температуре 20-25 °С. Затем, в систему вводили эмульгатор, перемешивали в течение 10 минут и постепенно вводили мономер. Синтез проводили при температуре 65-70 °С в течение 6-7 часов.
Концентрация инициатора была увеличена до 2 % от массы мономера, для компенсации его возможного разложения при получении суспензии диоксида титана.
У полученных дисперсий определяли массовую долю нелетучих веществ, рН среды, поверхностное натяжение. Результаты анализа также представлены в таблице 3.3.
Можно отметить, что наличие диоксида титана не влияет на конверсию мономера. Конверсия мономера составляет 75-80 %. Незначительно увеличивается рН дисперсий, что можно объяснить уменьшением количества эмульгатора в растворе и, соответственно, уменьшением количества алкилбензолсульфоновой кислоты, образующейся в результате гидролиза сульфонола. Об уменьшении количества эмульгатора в растворе также свидетельствует увеличение поверхностного натяжения дисперсии. Уменьшение количества ПАВ можно объяснить его сорбцией на поверхности частиц диоксида титана или на поверхности образующихся композитных частиц «полимер – пигмент».
Для определения количества диоксида титана, вошедшего в состав твердой фазы, образец дисперсии коагулировали концентрированным раствором квасцов, полученный осадок многократно промывали дистиллированной водой для удаления электролита и эмульгатора. Осадок отделяли центрифугированием от водной фазы и высушивали до постоянной массы при температуре Т=105 °С.
Содержание диоксида титана в твердой фазе дисперсии определяли гравиметрическим методом, по потере массы при прокаливании при температуре 600 °С. Результаты эксперимента представлены в таблице 3.3.
Как следует из экспериментальных данных, содержание диоксида титана в твердой фазе дисперсий ПММА, полученных с использованием его в качестве неорганического носителя, составило около 8 % , вне зависимости концентрации мономера. Т.е. почти 80 % введенного при полимеризации диоксида титана вошло в состав композитных частиц.
На рисунке 3.8 представлены микрофотографии синтезированных дисперсий. На рисунке 3.9 приведена микрофотография исходной суспензии диоксида титана.
|
а) |
б) |
|
в) |
г) |
Рисунок 3.8 – Микрофотографии синтезированных дисперсии при концентрации метилметакрилата 15 % (а, б) и 30 % (в, г): а) и в) – дисперсия ПММА; б) и г) – дисперсия ПММА с использованием диоксида титана в качестве неорганического носителя (размер ячейки сетки на всех рисунках 30х30 мкм)
Рисунок 3.9 – Микрофотография суспензии диоксида титана. (размер ячейки сетки 30х30 мкм)
Из рисунков 3.8-3.9 видно, что крупных агрегатов частиц диоксида титана нет и частицы равномерно распределены по объему.
У полученных акриловых дисперсий с использованием диоксида титана в качестве неорганического носителя также определяли дисперсионный состав. На рисунке 3.10 приведены кривые распределения по размерам частиц композитных дисперсий.
Фосфолипазы
Фактически различают несколько фосфолипаз группы А, они являются составной частью многих тканей и секретов живых организмов. Фосфолипазы A1 в большинстве своем - внутриклеточные ферменты, часто мембраносвязанные, не нуждаются в коферменте. Их молекулярные массы варьируют в пределах 15-90 тыс.; опти ...
Присадки к дизельным топливам
В настоящее время производство высококачественных дизельных топлив невозможно без добавки присадок различного функционального назначения, таких как депрессорные, цетаноповышающие, противоизносные, антидымные, моющие, антиокислительные, диспергирующие, ингибиторы коррозии и другие. Добавка пакета пр ...
Александр Михайлович Бутлеров (1828—1886)
Совершенно исключительна по своему значению для развития мировой химической науки научная деятельность А. М. Бутлерова. Поэтому и самая личность А. М. Бутлерова заслуживает особого внимания и рассмотрения. А. М. Бутлеров родился 25 августа 1828 г. в г. Чистополе, Казанской губернии. На одиннадцатый ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.