3. , т.е. ,
т.е.
В системе имеет место седиментационно-диффузионное равновесие.
Проинтегрируем это уравнение, разделив переменные:
;
Примем ,
,
где vo – концентрация частиц на дне сосуда;
vh – концентрация частиц на высоте h от дна.
Отсюда
- гипсометрический закон Лапласа-Перрена.
В этом случае система является седиментационно-устойчивой, но распределение частиц в ней не равномерное, а равновесное
. Это распределение наблюдается, когда 10-5 < r < 10-3 см.
Если сравнить седиментацию с учетом диффузии и без нее, то видно различие факторов обусловливающих кинетическую устойчивость. Эти факторы позволяют различать кинетическую седиментационную устойчивость (КСУ) и термодинамическое равновесие, которого не может быть при КСУ. Мерой КСУ является величина, обратная константе седиментации.
Эта устойчивость обеспечивается гидродинамическими факторами: вязкостью и плотностью среды, плотностью и размерами частиц. КСУ измеряется в обратных сведбергах: обр. св. = 1013 с– 1.
ТСУ обусловлена статистическими законами диффузии и непосредственно связана с диффузионно–седиментазионным равновесием. Мерой ТСУ является гипсометрическая высота. Ее удобнее определять как высоту hе, на протяжении которой концентрация дисперсной фазы изменяется в e раз.
Из формулы следует, что hе и ТСУ тем больше, чем меньше размер частиц и разность между плотностями. Вязкость не влияет на ТСУ, а увеличение Т способствует повышению устойчивости, т.к. увеличивается тепловое движение. КСУ с увеличением Т убывает, за счет снижения вязкости среды.
Итак, седиментационная устойчивость дисперсных систем определяется, главным образом, размерами частиц дисперсной фазы:
· лиофобные золи (10– 7 – 10– 5 см) – седиментационно устойчивые системы, характерна диффузия, обеспечивающая равномерное распределение частиц по объему системы;
· микрогетерогенные системы (10– 5 10– 3 см) – устанавливается седиментационно – диффузионное равновесие, для которого характерно гипсометрическое распределение частиц по объему системы;
· грубодисперсные (более 10– 3 см) - седиментационно неустойчивые системы, происходит быстрая седиментация.
Зависимость распределения частиц по высоте в равновесном состоянии аналогична барометрической формуле Ла-Пласса для газов в атмосфере:
,
где m – масса частицы;
h1, h2 – высоты уровней замера;
с1, с2 – концентрации на уровнях h1 и h2 соответственно;
- плотность частицы;
0 - плотность среды.
При коагуляции золя смесью двух и более электролитов возможны три случая (рис. 3.1.2.3). По оси абсцисс отложена концентрация первого электролита С1, а Cк1 – его порог коагуляции. Аналогично по оси ординат отложена концентрация второго электролита С2, а Ск2 – его порог коагуляции.
1. Аддитивное действие электролитов (линия 1 рис. 3.1.2.3). Электролиты действуют как бы независимо один от другого, их суммарное действие складывается из воздействий каждого из электролитов. Если с1´ - концентрация первого электролита, то для коагуляции золя концентрация второго электролита должна быть равной с2´. Аддитивность наблюдается обычно при сходстве коагулирующей способности обоих электролитов.
2. Синергизм действия (линия 2 рис. 3.1.2.3). Электролиты как бы способствуют друг другу – для коагуляции их требуется меньше, чем нужно по правилу аддитивности (с2″ < c2′). Условия, при которых наблюдается синергизм, сформулировать трудно.
Гавриил Гавриилович Густавсон (1842 —1908)
Несколько особняком в истории органической химии стоит монументальная фигура выдающегося русского химика-органика Г. Г. Густавсона. Среднее образование он получил в 3-й Петербургской гимназии. В 1865г. Он окончил естественное отделение физико-математического факультета Петербургского университета с ...
Основные направления поиска и создания лекарственных веществ
Создание лекарственного препарата – длительный процесс, включающий несколько основных этапов – от прогнозирования до реализации в аптеке [3, 18]. В создании новых ЛС участвуют представители многих профессий: химики, биологи, фармацевты (провизоры), фармакологи, токсиколога, врачи-клиницисты. Однако ...
Свойства бинарной смеси
1. Метиловый спирт - бесцветная, легкоподвижная жидкость с запахом, аналогичным запаху этилового спирта; t плавления - 93,9 °С; t кипения 64,509°С; плотность, г/см3 d420 0,7914; nD20 1,3286; η 0,584 МПа.с (20°С); давлетние паров (кПа): 11,8 (20 °С), 32,5 (40 °С), 77,3 (60 °С), 320,65 (100 °С); ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.