Большая сложность современных ХТС, многомерность их как по числу составляющих элементов, так и по числу выполняемых ими функций, высокая степень взаимосвязанности и параметрического взаимовлияния элементов определяет возникновение при решении задачи анализа и синтеза схем ряда принципиальных трудностей научно-исследовательского, методологического и вычислительного характера. Эти трудности могут быть в некоторой степени преодолены при применении топологического метода анализа ХТС. Этот метод предоставляет возможность формализовать функциональную связь между топологическим представлением системы и количественными характеристиками функционирования системы. С помощью топологического метода анализа можно разрабатывать оптимальную стратегию решения задач анализа функционирования и оптимизации сложных систем.
Применение топологического метода анализа основано на рассмотрении математических топологических моделей систем, которыми являются потоковые и структурные графы. Применение топологических представлений позволяет большой объем существенной информации о сложной ХТС приводить к компактной и наглядной форме. Это уже само по себе дает возможность составить качественное представление о некоторых свойствах исследуемой системы.
Отметим, что с помощью потоковых и структурных графов можно представить физико-химическую структуру исходной смеси, особенности технологической топологии системы в целом и отдельных ее узлов, устанавливать связь между изменениями технологической структуры и количественными характеристиками ХТС.
Пусть дано множество Х, которое состоит из элементов, называемых точками. Дан закон, позволяющий установить соотношение Т между каждым элементом множества Х и некоторыми из его подмножеств. Обозначим через Тх некое подмножество множества Х, отвечающее элементу х множества Х. Две математические величины – «множество Х» и «соответствие Т» - определяют граф G, обозначаемый как G = (X, T). Элементы множества Х будем изображать точками, и называть вершинами графа. Соотношения Т будем изображать отрезками (иногда ориентированными), соединяющими элемент с элементами подмножества Тх, и называть ребрами или дугами графа. Граф G называется конечным, если число его вершин конечно. На рис.1,а показан граф, определяемый множеством
X = {x0, x1, x2, x3, x4, x5}.
а)
|
|
|
|
|
|
б)
в)
Рис.1. Различные графы: а – граф, определяемый множеством вершин Х = {x0, x1, …, x5}; б – нуль граф; в – граф, определяемый множеством вершин Х = {a, b, c, d}.
Строение, образование и применение глюкозы
Глюкоза — моносахарид, одна из восьми изомерных альдогексоз. Глюкоза в виде D-формы (декстоза, виноградный сахар) является самым распространённым углеводом. D-глюкоза (обычно её называют просто глюкозой) встречается в свободном виде и в виде олигосахаридов (тростниковый сахар, молочный сахар) , пол ...
Выводы
Проведен литературный анализ реакции аллилирования НБД в присутствии различных каталитических систем и различных аллилирующих агентов. Разработана методика проведения каталитического аллилирования НБД в безкислородных условиях, освоены физико-химические методы анализа строения продуктов реакции и к ...
Реакции ацетиленов с сохранением тройной связи
Полярность связи С-Н возрастает от этана к ацетилену (дипольные моменты 0,3; 0,63 и 1,05 D), что связано с увеличением s-вклада в гибридное состояние орбиталей углерода. Следовательно, связывающая электронная пара смещена к атому углерода, и водород может быть отщеплен в виде протона сильными основ ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.