Разработки плутоний-содержащего топлива для реакторов на быстрых нейтронах (РБН) начались в 50-е годы и проводятся до настоящего времени.
В 70-е гг. была разработана технология изготовления смешанного уран-плутониевого топлива, основанная на процессе механического смешивания порошкообразных UO2 и PuO2, а в 1980г. начала работать установка "Пакет" на комбинате "Маяк". На этой установке было изготовлено 10 сборок топлива для реактора БН-350. Содержание плутония в топливе достигало 21-27,5%.
К недостаткам процесса с использованием механического смешивания и совместного размола порошков можно отнести наличие пылеобразующих операций, необходимость тщательного измельчения и диспергирования частиц PuO2 в матрице диоксида урана, чтобы при спекании образовался твердый раствор (UPu)O2.
Чтобы исключить присутствие пыли, был разработан золь-гель процесс, и в 1985г. введена в эксплуатацию установка "Жемчуг", действующая на основе этого процесса. На установке в 1987-1988 гг. были изготовлены 24 сборки для реактора БН-350. Однако попытки провести испытания золь-гель процесса в большем масштабе выявили недостатки этого процесса, основным из которых была нестабильность физико-химических характеристик и структуры образующегося топливного материала. Непостоянство характеристик золь-гель порошка вызывало трудности с регулированием операций прессования и спекания; в процессе золь-гель наблюдался большой процент брака. С учетом этого было решено, что золь-гель процесс не пригоден для внедрения на установках промышленного масштаба.
Стремление разработать экологически приемлемый технологический процесс (c минимальным количеством пыли) привело к созданию процесса с использованием соосаждения гидроксидов урана и плутония гидроксидом аммония и грануляции осадка в присутствии поверхностно-активных веществ. Этот процесс был использован при создании установки "Гранат" (гранулированное атомное топливо), которая была построена в течение одного года и в 1988 г. сдана в эксплуатацию.
Производительность этой установки в период с декабря 1988 г. по февраль 1989 г. составила 50 кг топлива из смешанных оксидов, а к 1993 г. было наработано 700 кг смешанного оксида. Плотность изготовленного топлива составила 10,5±0,09 г/см3; выход достигал 95-96 %. На установке "Гранат" были изготовлены экспериментальные сборки реактора БН-600. Облучение 15 сборок в течение 6 месяцев с последующим изучением характеристик облученного топлива позволило уточнить условия спекания и время изотермического прокаливания топлива.
Процесс с использованием аммоний-карбонатного соосаждения в лабораторных условиях позволяет получить порошки с хорошими керамическими и физико-химическими характеристиками. Однако этот процесс еще недостаточно изучен и не испытан в большом масштабе. Образующиеся порошки имеют более высокий уровень пыления, чем порошки, получаемые с помощью золь-гель процесса [].
Однако наиболее пылящими являются порошкообразные оксиды, обрабатываемые в процессах механического смешивания и совместного размола [].
Процесс плазмохимической конверсии, в основе которого лежит высокотемпературная денитрация нитратов урана и плутония, обладает рядом привлекательных особенностей. Одной из важных положительных особенностей этого процесса является высокая скорость производства порошкообразного материала, а также отсутствие операции фильтрации, промывки, сушки и других операций с тепловой обработкой.
Для реализации плазмохимической конверсии была разработана установка "Зенит", на которой было получено 34 кг порошка оксидов урана и плутония. Из этого порошкообразного материала на установке "Пакет" были изготовлены таблетки и твэлы. Полученное топливо использовали в реакторе БН-600.
Наряду с достоинствами плазмохимический процесс имеет и серьезные недостатки, одним из которых является высокая степень дисперсности порошка. Такие порошки обладают способностью к адгезии и когезии и не являются текучими. Отсюда следует необходимость предварительного прессования и гранулирования материала, используемого при изготовлении топливных таблеток. Высокая степень пыления порошков требует организации эффективной системы газоочистки, что обусловливает большое количество отходов в виде нерегенерируемых фильтров.
На основании сказанного выше можно сделать вывод о том, что при современном уровне развития технологии плазмохимический процесс не может быть рекомендован для промышленного использования.
Пироэлектрохимический процесс был разработан в НИИАР (Димитровград) для получения смеси, содержащей 30 % PuO2. Последующие исследования показали, что можно изготовить топливную композицию, содержащую до 75 % PuO2 при сохранении требуемого качества гранулированного материала.
Анодирование
Методы, которые были рассмотрены выше, были основаны на различных химических способах осаждения пленок на подложки из других материалов. При этом выбор материалов подложек, несмотря на ограничения электрического и термического характера, остается достаточно широким. Существует группа доступных мето ...
Описание технологической схемы стабилизации бензина
Физическая стабилизация бензиновой фракции осуществляется в полной ректификационной колонне–стабилизаторе бензина К-103, где в качестве контактных устройств используются перекрестноточные насадочные модули в количестве 40 шт. Режим колонны К-103: давление – 0,9 -0,95 МПа (9,0-9,5 кгс/см2), температ ...
Методы известково-катионитовый и частичного катионирования
Известково-катионитовый метод умягчения воды (рис. 20.17) является смешанным способом и относятся к реагентно-катионитовому. Карбонатную жесткость исходной воды устраняют известкованием, затем вода поступает на последующее натрий-катионированпе. Известкование применяют для снижения щелочности (или ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.