К преимуществам описанного метода можно отнести то, что он всегда дает определенный результат, если имеет место хоть какое-то падение функциональной зависимости полученного электродного потенциала системы от объема добавленного титранта.
Метод двух точек. Авторы работы [4] предложили интересный подход к обработке кривых потенциометрического титрования. Его суть состоит в том, что для электрода, обратимого по иону в реакции титрования
, (1.1)
используя уравнение Нернста
(1.2)
(Еф – формальный стандартный электродный потенциал; – активность иона А в анализируемом растворе) и материального баланса
(1.3)
(v0 - начальный объем титруемого раствора; v - добавленный объем титранта; c0 - молярная концентрация титруемого иона A; ct - молярная концентрация титранта по иону В), можно записать
. (1.4)
Затем можно придти к следующему отношению производных в двух точках v1 и v2
, (1.5)
откуда искомая концентрация титруемого раствора
, (1.6)
где
. (1.7)
При v2 ® v1
. (1.8)
Представленный метод отличает простота и доступность, однако игнорирование обратимости аналитической реакции и проблема выбора расчетных точек v1, v2 затрудняют получение корректных результатов.
Метод Коэна [5]. В основе этого метода лежит графическое построение хорд, соединяющих точки кривой с одинаковыми ординатами и прокладывание через их середины наилучшей прямой. Значение vктт, отвечающее точке ее пересечения с кривой, принимается за конечную точку титрования. Для случая ассиметричных кривых титрования, когда имеет место образование продукта реакции вида AaТb, автор рекомендует вместо деления хорд на равные отрезки делить их в отношении a:b.
Метод Фортуина[6]. По методу Фортуина для определения точки эквивалентности реакции используют максимальную разность потенциалов DЕm для равных добавок титранта Dv и соседние с ней разности DEv и DЕn, отвечающие предыдущей и последующей добавкам титранта соответственно. Затем образуют отношения
и . (1.9)
Точку перегиба кривой титрования рассчитывают по уравнению
, (1.10)
где vm - объем титранта, отвечающей начальной точке интервала DЕm, а s - коэффициент, находимый из номограммы, построенной для различных значений X1 и Х2. Оценка точки перегиба сильно зависит от величины Dv.
Метод линейного интерполирования по разностям потенциалов второго порядка. Этот метод, предложенный Ханом и Вейлером [7], основан на тех же принципах, что и описанный выше метод Фортуина. Отличие состоит в том, что для расчета коэффициента в уравнении (1.10) используются конечные разности потенциалов второго порядка, меняющие свой знак при переходе через точку перегиба. Расчетная формула имеет следующий вид:
, (1.11)
где ; .
Воспроизводимость метода невысока из-за больших погрешностей определения величины DЕ, обусловленными неточностью измерения потенциала. Другой недостаток метода заключается в том, что он не учитывает асимметрии кривых титрования.
Метод производной (первый метод Грана) [8]. В этом методе автор с одной стороны учел материальный баланс веществ в титрационной системе, но с другой стороны ввел упрощающее предположение о том, что каждая добавленная порция реагента полностью выпадает в осадок. Графическое изображение зависимости величины
(1.12)
Общие понятия о
ферментах
Важнейшим свойством ряда белков является их каталитическая активность. Вещества белковой природы, способные каталитически ускорять химические реакции, называют ферментами (от лат. Fermentum – закваска) или энзимами (от греч. ен – внутри, зим – закваска). Как вытекает из происхождения названий этих ...
Изучение реакции взаимодействия S-метилтио-N-нитрокарбамата с раствором
аммиака
Первый эксперимент велся при эквимольных соотношениях S-метилтио-N-нитрокарбамата и 23,4%-ного раствора аммиака в спиртовом растворе (на 0,25 г S-метилтио-N-нитрокарбамата 18,5 мл этилового спирта). Спустя 2 часа после смешения компонентов УФ-спектры оставались неизменными по длине волны пика и его ...
Нефтехимия
и химия растительных масел как источники сырья для получения ПАВ
В последние годы наблюдается тенденция к использованию «зеленых» ПАВ, особенно в быту. Термин «природное ПАВ» служит указанием на природный источник вещества. Однако ни одно ПАВ, используемое сегодня в значительных объемах, нельзя считать природным в полном смысле. За небольшим исключением все ПАВ ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.