Спектрофотометрический и фотоколориметрический анализы являются разновидностями молекулярно-абсорбционного спектрального анализа. Сущность молекулярно-абсорбционного спектрального анализа заключается в качественном и количественном определении веществ по их спектрам поглощения. Физической основой спектрального анализа является взаимодействие электромагнитного излучения с веществом.
Основной закон спектрофотометрии - закон Бугера-Ламберта-Бера. Применительно к растворам его запись выглядит следующим образом:
, |
(1.4) |
где, 10 – начальная интенсивность светового потока,
I - интенсивность светового пучка после прохождения раствора,
ε – коэффициент поглощения (экстинкции) светового потока,
С – концентрация вещества в растворе в моль/л,
l – толщина слоя светопоглощающего раствора.
Из уравнения (1.4) следует:
, |
(1.5) |
Величина lg (I0/I) называется оптической плотностью раствора и обозначается символом D. Из (1.5) имеем:
|
(1.6) |
Из уравнения (1.6) следует, что оптическая плотность раствора прямо пропорциональна концентрации светопоглощающего вещества в растворе и толщине слоя раствора. То есть при определённой толщине слоя раствора, оптическая плотность будет тем больше, чем больше концентрация вещества в растворе. Отсюда следует, что, определяя оптическую плотность раствора, мы можем напрямую определять концентрацию вещества в растворе. Увеличивая толщину слоя l можно измерять очень малые концентрации веществ [10,19].
Количественное определение исследуемых флавоноидных соединении в УФ- и видимой области спектров основано на измерении оптической плотности при длине волны в максимумах поглощения как растворов анализируемых веществ, так и растворов их окрашенных комплексов.
Спектрофотометрическое определение по максимумам собственного поглощения в разновидности прямой спектрофотомерии или дифференциальной спектрофотомерии является одним из наиболее распространенных методов анализа флавоноидов. При этом рабочими диапазонами длин волн служат как длинноволновые максимумы для флавоноидов – 330-370 нм, так и коротковолновые. Коротковолновые максимумы, хотя и более интенсивны, но в ряде случаев менее пригодны для аналитических целей из-за малой «площади» вершины пика, что приводит к большим ошибкам определения. Относительная ошибка прямого спектрофотометрического определения составляет ± 2-5 % и может быть снижена при дифференциальной методике анализа до 0.5-1.0 %. Рабочий интервал концентраций спиртовых, спиртоводных растворов составляет от 5 до 20 мкг вещества в 1 мл раствора. Обладая высокой чувствительностью, метод не селективен, так как не контролирует содержание каждого из веществ одного класса соединений и не позволяет судить о их количестве.
Спектрофотометрические или фотометрические определения по реакции диазотирования ранее были широко распространены в анализе. Реакция чувствительна, но не избирательна, так как наряду с флавоноидами эту реакцию дают фенольные соединения, пиразолоны и другие классы соединений. Применение данного метода ограничено неспецифичностью его и внутри каждого из классов соединении из-за прохождения реакции у флавоноидов только по кольцу А при наличии свободного ортоположения по отношению к фенольному гидроксилу у 7-го углеродного атома. Поэтому даже суммарные определения с данным реактивом не показывают истинного содержания исследуемых веществ как в суммарных фитохимических препаратах, так и в растительном сырье.
Характеристика производимой продукции
Готовым продуктом производства является винилиденхлорид-сырец, который должен соответствовать требованиям технологии, указанным в таблице. Таблица 1− Требования, предъявляемые к готовой продукции Наименование показателей Норма 1 Внешний вид, цвет Бесцветная прозрачная жидкость без посторонних ...
Краткие сведения о проводимом процессе
Метод тонкой каталитической очистки газов от СО и С02 основан на следующих обратимых экзотермических реакциях гидрирования: Данные реакции принято называть по продукту гидрирования процессами метанирования СО и СО2 2CO + 2H2 = CH4 + CO2 CO + H2O = CO2 + H2 2CO = CO2 + C CO + H2 = H2O + C CH4 = 2H2 ...
Ацилирование и алкилирование аминов
Третичные амины отличаются от первичных и вторичных аминов отсутствием способных к замещению атомов водорода, связанных с азотом. Это различие ясно проявляется при действии ацилирующих и алкилирующих средств; из первичных и вторичных аминов при ацилировании обычно получаются замещенные амиды, тогда ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.