Новая химия » Разработка методики определения флавоноидов в лекарственном растительном сырье » Абсорбционная спектроскопия

Абсорбционная спектроскопия

Страница 1

В целом для флавоноидов характерно поглощение в УФ-видимой области спектра (210-600 нм). Спектр поглощения флавоноидного соединения содержит, как правило, две полосы: одна из них в низковолновой (210-290 нм) части – полоса II, другая – в более длинноволновой (320-380 или 490-540 нм для антоцианидинов) части – полоса I.

Положение полос поглощения служит в некоторой степени характеристическим признаком отдельных групп флавоноидов. Так, флаваноны и флаванонолы отличаются от других групп флавоноидов положением полосы II в области 270-290 нм и наличием полосы I в виде плеча при 310-330 нм (рисунок 1.12). В то время как для флавонов и флавонолов специфическим признаком служит положение полосы I в области 320-355 и 340-385 нм соответственно (рисунок 10). Для халконов характерно положение полосы II в несколько более длинноволновой области (рисунок 1.13).

Рисунок 1.12 – Положение полос поглощения в УФ-видимой области спектра для изофлавона (1) и флавонона и флавононола (2)

Рисунок 1.13 – Положение полос поглощения в УФ-видимой области спектра для флавона (1), флавонола (2) и халкона (3)

Внутри каждой группы флавоноидов выявлена более «тонкая» картина зависимости положения максимумов полос поглощения от структуры соединения. Например, у ряда флавонов с одинаковым 5,7-дигидроксизамещением кольца А полоса I перемещается в более длинноволновую область по мере возрастания числа гидроксильных групп в кольце В (таблица 1.4).

Таблица 1.4 – Зависимость положения максимумов полос поглощения ОН-группы в кольце В у ряда флавонов

Положение ОН-группы в кольце В

Полоса I

Хризин

313 нм

Апигенин

4'

336 нм

Лютеолин

3',4'

349 нм

Трицетин

3',4',5'

354 нм

Абсорбционная спектроскопия флавоноидов хорошо изучена, и выявленные закономерности широко используются в целях идентификации и установления строения новых соединений. Особенно информативной является процедура добавления шифт-реагентов, каждый из которых предназначен для выявления определенных «диагностических» признаков в структуре исследуемого соединения [13].

Шифт-реагенты принято добавлять к раствору исследуемого флавоноидного соединения в метаноле (в случае антоцианов и/или антоцианидинов – в метаноле с 0.01% хлороводородной кислоты). После добавления шифт-реагента в исходном спектре происходит сдвиг полос поглощения и по характеру этих изменений делается вывод о наличии (или отсутствии) в соединении определенных структурных фрагментов.

Часто шифт-реагенты используются для обнаружения в структуре соединений:

1. гидроксильных групп с наиболее выраженными кислотными свойствами (7-ОН, 4'-ОН);

2. хелатообразующего фрагмента, т. е. сочетания 4-оксогруппы с 3-ОН- и/или 5-ОН-группами.

Гидроксильные группы различаются по кислотности и располагаются в следующий ряд: 7-ОН > 4'-ОН > 3'-ОН > 5-ОН. Для доказательства наличия в структуре свободной наиболее кислой 7-ОН-группы служит слабощелочной шифт-реагент – ацетат натрия (таблица 1.5). Несколько миллиграммов плавленого ацетата натрия добавляют к аликвоте исходного метанольного раствора исследуемого вещества, снимают спектр и сравнивают со спектром исходного раствора.

Таблица 1.5 – Шифт-проба с ацетатом натрия

Группа флавоноидов

Полоса поглощения

Сдвиг, нм

Детектируемый структурный признак

Флавоны

I

+ (5-20)

Свободная 7-ОН-группа

Флавонолы

Изофлавоны

Флаваноны

II

+ (30-60)

Свободная 7-ОН-группа

Флаванонолы

Страницы: 1 2 3 4

Еще по теме:

Галогениды платиновых металлов
Галогениды платиновых металлов образуются в процессах галогенирования тонкодисперсных порошков металлов и их солей, а также при прокаливании галогенидов этих металлов в инертной атмосфере или в атмосфере соответствующего галогена. Полученные из водных растворов галогениды содержат воду, при полном ...

Выводы
1. Сажа, содержащая эндоэдральный металлофуллерен Gd@C82, получена электродуговым методом путем испарения композитных электродов в атмосфере газообразного гелия. Фуллерены и эндоэдральные металлофуллерены выделены из сажи экстракцией о-дихлорбензолом. Выход ДХБ экстракта составил 1,5% от веса сажи. ...

Второй этап развития Петербургского химического центра
Большое значение для развития русской химической науки, и в том числе органической химии, имела выдающаяся научная и литературная деятельность русского ученого А. И. Горбова ученика и многолетнего сотрудника А. М. Бутлерова и Д. И. Менделеева. Александр Иванович Горбов родился 11 мая 1859 г. в Моск ...

Идеи алхимии


Идеи алхимии

Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.

Категории

Copyright © 2018 - All Rights Reserved - www.chemitradition.ru
Copyright © 2020 - All Rights Reserved - www.chemitradition.ru