Новая химия » Щелочноземельные металлы » Химические свойства соединений элементов

Химические свойства соединений элементов

Страница 4

Mg3N2 + 6CH3OH = NH3 + N(CH3)3 + 3Mg(OH)OCH3;

Mg3N2 + 3COx = 3MgO + N2 + 3COx-1

Оба нитрида гидролизуется водой и растворяются в кислотах:

Э3N2 + Н2О = NH3 + Mg(OH)2; Э3N2 + 8H+ = 2Э2+ + 2NH4+.

Mg3N2 является восстановителем.

Фосфиды Э образуются при действии паров фосфора на порошки соответствующих металлов. Они разлагаются водой до гидроокиси и фосфина. Также они горят выделяя ЭО, Р2О5 и много тепла.

Силициды известны лишь для магния (Mg2Si и Mg3Si2). Орто-силикат бериллия встречается в природе в виде минерала фенакита. Можно получить при нагревании BeO и SiO2 по схеме: 2BeO + SiO2 = Be2SiO4. Он нерастворим. Бериллий образует интерметаллические соединения: MoBe12, WBe12, TaBe12, UBe13, PuBe13 и др.

Бериллиды обладают высокой прочностью и температурой плавления. Так, NbBe2 имеет Тпл 1880 оС, Ta2Be17 – 1980 оС, а ZrBe13 – 1920 оС.

Кристаллические структуры интерметаллических соединений, по сравнению со многими системами на основании других металлов, значительно различаются между собой. В первом приближении все магниды можно разделить на две большие группы:

· магниды, имеющие структуры, типичные для металлов и сплавов;

· магниды, имеющие структуры, типичные для ионных или гетерополярных соединений.

Граница между этими группами условна, но, в общем, увеличение атомного номера в периоде сопровождается последовательным переходом от соединений металлического типа к валентным и ионным соединениям.

Существуют несколько способов получения магнидов; важнейшими из них являются следующие:

1. Синтез из компонентов по реакции общего вида: xMe + yMg ® MexMgy, реакция осуществляется сплавлением, спеканием (или горячим прессованием), дистилляцией. Этим методом можно получать все обнаруженные к настоящему времени магниды двойных или многокомпонентных систем;

2. Магнийтермическое восстановление: MeхOy + (y+z)Mg ® MeхMgz + yMgO. Применяется в случаях, когда прямое сплавление не дает должного результата;

3. Электрохимический способ (электролитическое выделение);

4. Пиролиз, например, по схеме: MgB2 800–960 C® MgB4 970 C® MgB6 >1200 C®MgB12.

Малая плотность, высокая Тпл, необычайно высокий модуль упругости (300 ГПа), уникальная теплоемкость (1826 Дж\(кг.К)) и высокие значения электрической проводимости и теплопроводности обусловили применение Ве в различных областях техники. Бериллий потребляется атомной промышленностью как отражатель и замедлитель нейтронов и как конструкционный материал. Он широко применяется в точных приборах: системах наведения и управления, в авиа- и ракетостроении. Также Ве применяют для легирования различных сплавов. Бериллиевые бронзы (сплавы Ве с Cu) нашли применение для изготовления контактов, зажимов и др. аппаратуры. Они обладают хорошей электропроводностью и механическими свойствами. Окись бериллия нашла применение как отражатель и замедлитель нейтронов, а также для изготовления оболочек ТВЭЛов и тиглей.

Практический интерес представляют сплавы Mg–Zr, поскольку сравнительно небольшая добавка циркония существенно уменьшает размер зерна магния и таким образом улучшает механические свойства материала. Такие сплавы применяются, например, в качестве материала для оболочек тепловыделяющих элементов реактора с графитовым замедлителем и теплоносителем CO2.

Магний обладает большим сродством к кислороду. На этом свойстве магния основана магнийтермия, открытая Бекетовым как способ получения других металлов вытеснением их магнием из соединений. Она приобрела большое значение для современной металлургии. В качестве примера можно указать, что магнийтермия стала основным способом в производстве таких металлов, как бериллий и титан. Относительно легкая воспламеняемость дисперсного магния и способность его гореть ослепительным белым пламенем долгое время использовалась в фотографии. Магниевый порошок стали применять также в качестве высококалорийного горючего в современной ракетной технике. Введение небольшого количества металлического магния в чугун позволило значительно улучшить его механические (в частности, пластические) свойства.

Глубокая очистка магния от примесей, достигнутая в последнее время, позволила использовать его в качестве одного из компонентов при синтезе полупроводниковых соединений.

Основное преимущество металлического магния – его легкость (магний – самый легкий из конструкционных металлов). Технически чистый магний обладает невысокой механической прочностью, однако введение в него в небольшом количестве других элементов (алюминия, цинка, марганца) может значительно улучшить его механические свойства почти без увеличения удельного веса. На основе этих свойств магния был создан сплав “электрон”, содержащий, помимо магния, 6% алюминия, 1% цинка и 0,5% марганца. (В настоящее время под техническим названием “электрон” понимаются вообще все сплавы, в которых магний является главной составной частью). Плотность этого сплава – 1,8 г/см3; прочность на разрыв – до 32 кГ/мм2; твердость по Бринеллю – 40–55 кГ/мм2. Этот, а также многие другие сплавы на основе магния широко применяются в авиа- и автостроении. Основной недостаток магния – низкая коррозионная стойкость. Магний сравнительно устойчив в сухом атмосферном воздухе, в дистиллированной воде, но быстро разрушается в воздухе, насыщенном водными парами и загрязненном примесями, в особенности сернистым газом. Ниже приведена таблица коррозионной устойчивости магния и его сплавов. ”-” – неустойчив, ”+” – устойчив.

Дистиллированная вода при 100 оС

+

Пресная вода, морская вода, пар

-

Чистая HF

+

Чистая H2CrO4

+

Прочие растворы неорг. кислот

-

Фториды щелочных металлов

+

Растворы хлоридов

-

Хроматы калия и натрия

+

Раствор Na(OH)40% при Т=120 оС

+

Сода

+

Сера (жидкая и газ)

+

Растворы сульфатов (кроме аммония)

-

СS2

+

Ртуть

-

Фтор

+

Хлор

-

Орг. кислоты

-

Метиловый спирт

-

Этиловый и бутиловый спирты

+

Теплый раствор мочевины

-

Холодный раствор мочевины

+

Глицерин

-

Гликоль и гликолевые смеси

-

Уксусный и этиловые эфиры

+

Формальдегид и ацетальдегид

-

Трихлоральдегид

-

Ацетон

+

Нефть, мазут, бензин, метан, этан

+

Бензол, толуол, ксилол, фенол, крезол

+

Камфора, копаловые смолы

+

Каучук, резина

+

Жиры и масла, не содержащие кислот

+

Целлюлоза, сахар (бескислотный р-р)

+

Страницы: 1 2 3 4 5

Еще по теме:

Применение полимеров акриламида
Полимеры АА обладают уникальным комплексом полезных свойств и широко используются в различных областях техники и технологии. Различные области применения и назначение полимеров показаны в табл. 2 [3]. Приведенные данные свидетельствуют о многофункциональном назначении и различных возможностях приме ...

Экстракция комплексов платиновых металлов
Жидкостная экстракция – высокоэффективный процесс извлечения, концентрирования и разделения близких по свойствам элементов. Многочисленные исследования экстракции платиновых металлов всеми известными классами экстрагентов позволили сделать вывод, что для большинства комплексов наиболее высокое извл ...

Двигательная функция
Все известные способы движения живых организмов основаны на работе соответствующих белков. Так, сокращение мышц обеспечивают мышечные белки актин и миозин. В поперечно-полосатых мышцах имеются пучки актиновых и миозиновых нитей, которые называются тонкими и толстыми филаментами. При возбуждении мыш ...

Идеи алхимии


Идеи алхимии

Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.

Категории

Copyright © 2018 - All Rights Reserved - www.chemitradition.ru
Copyright © 2025 - All Rights Reserved - www.chemitradition.ru