Диоксимы и монооксимы [6,18,20,21,28,32-35]. Большая группа реагентов для спектрофотометрического определения палладия принадлежит к классу оксимов (α-диоксимов и монооксимов) и отличается высокой селективностью взаимодействия с палладием, достаточной чувствительностью (ε = 1·104-3·104) и большой термодинамической устойчивостью образуемых с палладием комплексов.
Среди диоксимов в качестве реагентов для спектрофотометрического определения палладия наиболее изучены диметилдиоксим, метилдиоксим, 1,2-циклогександиондиоксим, 4-метил-1,2-циклогександиондиоксим, бензоилметилдиоксим, α-бензилдиоксим, 2,2’-дипиридилдиоксим и α-фурилдиоксим. Для этой цели предложены также диоксимы фтальмида и оксимы изонитрозоацетанилида.
Избирательность действия диоксимов по отношению к палладию повышается вследствие способности его комплексов растворяться в неводных растворителях и возможности использовать маскирующие средства (ЭДТА и др.). С использованием диоксимов разработан целый ряд экстракционно-фотометрических методов определения палладия в присутствии платиновых металлов, а также других металлов, обычно сопутствующих палладию в природных и производственных объектах.
Экстракционно-фотометрический метод определения палладия, основанный на применении диметилдиоксима, привлекает доступностью реагента и позволяет определять палладий в присутствии больших количеств свинца и серебра в азотнокислых растворах, а также в присутствии меди и никеля в сернокислых растворах. Мешающее влияние платины(II), иридия(III), золота(III), железа(II) можно предотвратить добавлением ЭДТА.
Систематическое исследование большого числа моноазосоединений позволило выбрать среди них реагенты на палладий, отличающиеся высокой чувствительностью и избирательностью.
Практическое применение из реагентов этой группы нашел 1-(2-пиридилазо)-2-нафтол (ПАН) [6,18,20,21,28,32-35]. Контрастность реакции Pd(II) с ПАН существенно усиливается при экстракции комплекса хлороформом, так как при переходе из водной фазы в органическую уменьшается сольватационный эффект и усиливается взаимодействие ионов Pd(II) с ПАН за счет упрочнения связи с атомом азота пиридинового кольца.
Количественные характеристики реакции образования комплекса Pd(II) с ПАН, а также данные о прочности комплекса в водном растворе и в хлороформе в литературе отсутствуют, что, несомненно, ограничивает усовершенствование имеющихся методик и расширение возможностей этого реагента для определения палладия в сочетании с различными сопутствующими элементами в разнообразных объектах.
Характерно наличие в видимой области трех полос светопоглощения с максимумами на длинах волн 450, 620 и 675 нм, причем в области 600-700 нм поглощает свет только комплексное соединение, что делает весьма эффективным применение ПАН в качестве фотометрического реагента на палладий.
Оптимальная область рН нахождения комплекса в водном растворе и его экстракции хлороформом укладывается в интервал значений pH 3-4. Используя численные значения констант ионизации ПАН [36], была рассчитана диаграмма распределения форм диссоциации ПАН в зависимости от рН, из которой следует, что в процессе комплексообразования с ионами Pd(II), который происходит в интервале значений рН 0-3, участвуют, конкурируя, ди- и монопротонированные формы ионизации. Образующийся в водном растворе комплексный катион состава [PdX]+ в процессе экстракции хлороформом переходит межфазную границу в виде ионного ассоциата [PdX]+ An- (ИА). При использовании ацетатного буфера для создания рН полнота перехода ИА в органическую фазу достигается уже при однократной экстракции. Такое увеличение полноты и экспрессивности экстракции, вероятно, связано с усилением гидрофобного взаимодействия между органической фазой и ионным ассоциатом, в составе которого хлорид-ионы, как менее гидрофобные, на границе раздела фаз замещаются на ацетат-ионы, и состав ионного ассоциата в хлороформе может быть представлен формулой [PdX]+[CH3COO]-. Отсутствие ионов Pd2+ в водной фазе после экстракции позволило сделать вывод о высоком значении константы распределения порядка 103. Экстремальные точки на кривых зависимости выхода комплекса от состава водного раствора при одном из оптимальных значений рН 3,1 на изомолярной диаграмме и на диаграмме насыщения соответствуют 1:1 соотношению Pd(II):ПАН. Константа устойчивости координационной сферы ИА в хлороформе равна 5,35.1018 и константа равновесия реакции комплексообразования 5,9.104 для области рН окончания процесса (рН=3) были рассчитаны по спектрофотометрическим данным для хлороформного раствора ИА с использованием зависимости светопоглощения растворов от рН.
Классификация мембран
Мембраны, использующиеся в различных мембранных процессах можно классифицировать по разным признакам. Наиболее пpoстой является классификация всех мембран на природные (биологические) и синтетические, которые, в свою очередь, подразделяются на различные подклассы исходя из свойств материала (Рис. 1 ...
Химизм процесса
Для получения низкомолекулярных полимеров (олигомеры) обычно процесс проводят при повышенной температуре в присутствии катализаторов кислотного типа. Из них практическое значение нашел гетерогенный контакт Ипатьева. Контакт готовят, пропитывая кизельгур, асбест или другие материалы орто – фосфорной ...
Изучение взаимодействия кротоната уранила с аммиаком
UO2 (C3H5COO) 2 · 2H2O: NH4OH: C3H5COOH (1: 1:1) Синтез проводился по следующей схеме. 0,19 г кристаллов кротоната уранила смешали с 0.034 г кротоновой кислоты и растворили в 10 мл дистиллированной воды. Поочередно маленькими порциями вливаем аммиак следя за pH средой. В результате образовался раст ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.