Новая химия » Синтез замещенных пирролов » Реакции замещенных пирролов

Реакции замещенных пирролов

Страница 4

Для проведения реакции с 2,5-диметил-3,4-дийодпирролом (5) мы выбрали те же реакционные условия, то есть реакцию замещения йода на нитрогруппу проводили при кипячении 3,4-дийодпиррола (5) с нитритом серебра в ацетонитриле в течение 2 ч или при выдерживании той же смеси в течение суток. Из реакционной смеси отфильтровывали осадок солей серебра и экстрагировали из него продукт ацетоном. По данным ТСХ реакционная масса состояла в основном из индивидуального продукта (Rf = 0,8(ПЭ:ЭА 1:1)), но содержала небольшую примесь исходного 3,4-дийодпиррола (Rf = 0,5(ПЭ:ЭА)) и незначительное количество других примесей. Однако, выделенный основной продукт оказался не продуктом замещения. Молекуярная масса полученного соединения по данным масс-спектрометрии составляла 361. В ИК-спектре помимо полос характерных для пиррольного гетероцикла, наблюдалась интенсивная полоса колебаний связи С=О при 1670 см-1. Характерных для нитро-группы сигналов N=О (1680 и 1600 см-1) и C-N (1530 см-1) групп не наблюдалось. В спектре ЯМР 1Н появился новый синглетный сигнал протона при 9.35 м.д. Совокупность полученных данных позволила заключить, что основным процессом было окисление одной из метильных групп до формильной. Вероятно, окислителем послужила соль серебра. Продукт окисления – 3,4-дийод-2-метил-5-формилпиррол (8) был выделен в виде кристаллического вещества, достаточно быстро разлагающегося на воздухе, что не позволило определить его температуру плавления. Выход продукта после очистки составил 11%.

Выбор следующих двух реагентов, был обусловлен нашим желанием получить конденсированные пирролы, смоделировав условия реакции Ганча [20]. Первым реагентом, с которым мы проводили исследования, был тиоацетамид. Синтез проводили двумя разными способами:

В первом случае растирали оба компонента, без растворителя при комнатной температуре и оставляли стоять в течение 10-15 мин. Наблюдали почернение реакционной массы, сопровождаемое повышением температуры смеси и выделением резкого неприятного запаха. Продукт отмывали бензолом и очищали с помощью колоночной хроматографии на силикагеле в системе растворителей гексан : этилацетат (8:1). В результате получили 2-метилпирроло[3,4-d][1,3]тиазол (9) с выходом 32%. Полученный продукт представляет собой кристаллическое вещество, и его структура была подтверждена спектральными методами. На ПМР спектре присутствуют синглетные сигналы протонов метильных групп во 2 и 5 положениях пиррольного кольца, которые смещены по сравнению с исходным соединением в слабое поле:

-СН3: 2,42 м.д. (3Н, с),

-СН3: 2,48 м.д. (3Н, с).

Помимо этих сигналов, присутствует сигнал протонов метильной группы –СН3 тиазольного кольца 2,58 м.д. (3Н; с), а также протона N-H группы: 7,94 м.д. (1Н; уш.с.). В масс-спектре соединения наблюдается молекулярный ион (m/z+1) 167.

Для повышения выхода продукта нами была проведена оптимизация условий получения. Во-первых, был осуществлен подбор растворителя. Оптимальным для этого синтеза оказался метанол. При попытке проведения реакции в других растворителях, таких как ДМФА и ацетонитрил, реакция даже не начиналась. Выбор метанола, как растворителя, кроме всего, определялся тем, что оба компонента реакции в нем хорошо растворяются, и он используется в условиях метода Ганча [20]. Во вторых, изучили влияние температуры и времени на ход процесса. Для начала реакционную массу грели при температуре 30ºС в течение 5 мин, однако по данным ТСХ не обнаружили увеличения пятна продукта реакции и уменьшения пятен исходного вещества и побочных продуктов. Далее постепенно повышали температуру на 10ºС и варьировали временной интервал от 5 до 30 мин. В итоге, по данным ТСХ обнаружили, что при проведении реакции в течение 5 мин и температуре 40ºС исчезает пятно исходного реагента, а пятно продукта увеличивается. Дальнейшее повышение температуры и изменение временного интервала не дало положительного результата. Поэтому для получения максимального выхода продукта первоначально оба вещества по отдельности растворяли в метаноле, а затем сливали оба раствора, смесь грели в течение 5 мин при 40º и оставляли стоять при комнатной температуре в течение 10-15, что приводило, как показали данные ТСХ, еще и к уменьшению количества примесных пятен. Продукт очищали с помощью колоночной хроматографии на силикагеле в системе растворителей гексан: этилацетат (3:1). В итоге получили 2-метилпирроло[3,4-d][1,3]тиазол с выходом (9) 56%.

Успешно проведя реакцию замещенного пирролотиазола мы решили дальше использовать синтетические возможности обнаруженной реакции.

Следующей конденсацией была реакция 3,4-дийодпиррола (5) с тиомочевиной. Данную реакцию проводили, взяв за основу выше отработанную методику. При проведении реакции в метаноле в течении 20 мин при комнатной температуре реакция не начиналась. Для увеличения полярности растворителя была взята водно-метанольная смесь (1:1). Для облегчения отрыва галогена добавляли поташ. В итоге, синтез проводили при взаимодействии 2,5-диметил-3,4-дийодпиррола (5) и тиомочевины в присутствии поташа (в эквимолярном соотношении) и в водно-метанольном растворе. По данным ТСХ реакция закончилась через 20 мин выдерживания при комнатной температуре. Продукт отмывали четыреххлористым углеродом от основного количества побочных продуктов и очищали с помощью колоночной хроматографии на силикагеле в системе растворителей ПЭ:ЭА (4:1). Выход продукта составил 43%. 2-аминопирроло[3,4-d][1,3]тиазол (10) представляет собой маслянистое вещество желтого цвета, достаточно быстро разлагающееся на воздухе. Его структура была подтверждена ПМР- и масс-спектроскопией. Помимо синглетных сигналов метильных групп – 2,22 м.д. (6Н; СН3) и сигнала уширенного синглета N-H группы – 7,7 м.д. (1Н; NH), на ПМР-спектре наблюдается дублетный сигнал протонов NH2-группы: 5,87 м.д. (2Н; NH2). На масс-спектре присутствует молекулярный ион m/z 168.

Страницы: 1 2 3 4 5 6 7

Еще по теме:

Циклическая вольтамперометрия
По мере восстановления на поверхности электрода окисленной формы Ох образуется восстановленная форма R, которая переходит обратно в раствор. При обратной развертке потенциала вблизи значения Е, равного окислительно-восстановительному потенциалу пары Ox-R, восстановленная форма вновь окисляется с об ...

Строение молекул эндоэдрального металлофуллерена M@C82
Атом или несколько атомов металла, внедренные внутрь фуллереновой молекулы, приводят к образованию новых стабильных изомеров углеродного каркаса, не наблюдаемых у пустых фуллеренов [2]. Как показывают результаты экспериментальных исследований, структура и свойства ЭМФ отличаются большим разнообрази ...

Нефтехимия и химия растительных масел как источники сырья для получения ПАВ
В последние годы наблюдается тенденция к использованию «зеленых» ПАВ, особенно в быту. Термин «природное ПАВ» служит указанием на природный источник вещества. Однако ни одно ПАВ, используемое сегодня в значительных объемах, нельзя считать природным в полном смысле. За небольшим исключением все ПАВ ...

Идеи алхимии


Идеи алхимии

Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.

Категории

Copyright © 2018 - All Rights Reserved - www.chemitradition.ru
Copyright © 2024 - All Rights Reserved - www.chemitradition.ru