В результате реакций акватации и гидролиза хлорокомплексов Ir(IV) в зависимости от концентрации H+ и Cl- - ионов, HCl, температуры и времени выдержки в растворах предполагается образование комплексов состава [Ir(H2O)nCl6-n]n-2 и [Ir(OH)nCl6-n]2- Постулируется образование комплексов [Ir(H2O)3Cl3]+, [Ir(H2O)2Cl4], [[Ir(H2O) Cl5]-, [Ir(OH)2Cl4]2-, [Ir(OH)4Cl2]2-, хотя в твердом состоянии ни один из них не выделен.
В солянокислых и хлоридных водных растворах хлорокомплексы иридия(IV) восстанавливаются, причем в качестве восстановителей могут выступать молекулы воды, OH- – ионы (в слабокислых и слабощелочных растворах), а также ионы Сl-:
4 [IrCl6]2- + 2H2O Û 4 [IrCl6]3- + O2 + 4H+
4 [IrCl6]2- + 4OH Û 4 [IrCl6]3- + O2 + 2H2O
2 [IrCl6]2- + 2Cl- Û 2 [IrCl6]3- + Cl2
Указанные реакции являются в той или иной мере обратимыми и протекают без изменения внутренней координационной сферы. Поэтому даже в концентрированных растворах HCl и KCl и в присутствии газообразного хлора в результате восстановления образуются хлорокомплексы иридия(III). Процесс восстановления [IrCl6]2 – ускоряется под действием УФ облучения. Хлорная кислота и перхлорат натрия замедляют его.
Предполагаемые формы существования хлорокомплексов иридия(III) и (IV) даны в табл. 4.
Среди металлов платиновой группы рутений и осмий выделяются многообразием степеней окисления. Ионы этих металлов обладают большим сродством к кислороду, склонностью к образованию оксокомплексов. Поэтому в водных растворах хлорокомплексов рутения и осмия возможно присутствие разнообразных акватированных, гидролизованных полимерных соединений, склонных к окислительно-восстановительным превращениям. Именно в водных растворах хлорокомплексов рутения и осмия можно ожидать существование многих комплексных форм различного заряда.
Таблица 4. Возможные формы нахождения хлорокомплексов иридия(III) и иридия(IV) в водных растворах
|
Комплекс |
Среда | |
|
Ir(III) |
Ir(IV) | |
|
[IrCl6]3- |
[IrCl6]2- |
>3.0 М HCl |
|
[IrH2OCl5]2- [Ir(H2O)2Cl4]- [Ir(OH)2Cl4]3- |
[IrCl6]2- [IrH2OCl5]- [Ir(OH)2Cl4]2- |
0,1–3,0 М HCl |
|
[Ir(H2O)2Cl4]- |
[IrCl6]2- [Ir(H2O) Cl5]- [Ir(OH)2Cl4]2- |
0.01–0.05 М HСl |
|
[Ir(OH)2Cl4]2- |
pH~7 | |
|
[Ir(H2O)4Cl2]+ [Ir(OH)4Cl2]3- |
[Ir(H2O)4Cl2]2+ [Ir(OH)4Cl2]2- |
pH 7 – 14 |
|
Ir2O3·nH2O |
IrO2·nH2O |
>0.1 М NaOH |
Способы вскрытия
платиновых металлов
Наиболее распространенными способами переведения в раствор отдельных платиновых металлов, их сплавов, а также материалов, содержащих одновременно несколько металлов платиновой группы, являются следующие: 1. растворение в кислотах или в смесях кислот (главным образом платины, палладия и их сплавов с ...
Формилирование фенолов
Формилирование – это введение формильной группы в ароматическое кольцо. Реакция Гаттермана. Попытки введения формильной группы в ароматическое кольцо фенолов, нафтолов и их простых эфиров с помощью СО и HCl (реакция Гаттермана-Коха) оказались безуспешными. Поэтому Гаттерман предложил метод введения ...
Свойства бинарной смеси
1. Метиловый спирт - бесцветная, легкоподвижная жидкость с запахом, аналогичным запаху этилового спирта; t плавления - 93,9 °С; t кипения 64,509°С; плотность, г/см3 d420 0,7914; nD20 1,3286; η 0,584 МПа.с (20°С); давлетние паров (кПа): 11,8 (20 °С), 32,5 (40 °С), 77,3 (60 °С), 320,65 (100 °С); ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.